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Abstract

This paper addresses the global and urgent environmental issue of
tropical deforestation. In our approach, foreign transfers from northern
countries to the forestry or developing countries are proposed as an in-
centive mechanism to guarantee a sustainable management of forests in
those developing countries. We consider the two players, the North (or
donor community) and the South (the forestry country) to have different
utilities for forest conservation. The South, whose revenue function in-
volves a trade-off between forest exploitation and agricultural activities.
The North, who represents a set of countries, aspiring to ensure a sustain-
able exploitation of the tropical forests. The objective of this paper is to
determine incentive strategies, conditioning the funds’ transfers directly
by the South’s actions regarding forests exploitation. These strategies can
be used by the North to indirectly force the South to choose an optimal
deforestation policy which is sustainable over time.
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visiting professor at GERAD-HEC Montréal. The second author’s research was also partially
supported by MCYT under project BEC2002-0236 and by JCYL under project VA051/03,
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1 Introduction

The global rates of tropical forest destruction are raising the general concern.
According to the Foods and Agriculture Organization’s (FAQO) estimates, 53000
square miles of tropical forests were destroyed each year during the eighties. A
report of the World Resources Institute (see, Matthews (2001)) confirms that
the deforestation rates did not slow but on the contrary continue to be rapid.

The adverse consequences of tropical deforestation on biodiversity conserva-
tion and climate change are considerable. In fact, the rate of carbon dioxide
released in the atmosphere due to the tropical deforestation is approximately
1.6 billion metric tons per year. This constitutes a significant contribution com-
pared to a rate of 6 billion metric tons of carbon emitted from fossil fuel burning;
one of the main factors of global warming (Earth observatory, 2001). On the
other hand, serious scientific estimates indicate that, in average, 137 species
forms of life (plants and animals) are driven into extinction every day due to
habitat destruction (Wilson, 1992).

The main causes of tropical deforestation seem to be the conversion of
forested land to agricultural use and, at a lower level, the forestry activities
(e.g. Amelung and Diehl, 1992; Barbier et al., 1991; Barbier and Burgess, 1997;
Kaimowitz and Angelsen, 1999; Southgate et al., 1991; and Southgate, 1990).

It is easily understood that since a country gets revenue from agriculture and
forestry activities, the temptation is high to follow a laisser-faire policy when it
comes to deforestation. In fact, scholars are pointing out that even if the costs
of forest preservation are small compared to the large non-economic benefits
from doing so, at a domestic level these benefits remain much smaller than the
global ones (e.g. Montgomery, 2002; Chomitz and Kumari, 1998; Cline, 1992).

Barret (1994), Von Amsberg (1994), Van Soest (1998) and Van Soest and
Lensink (2000) argue that in some instances the allocation of forest lands to
alternative use may enhance the domestic country’s welfare, while decreasing
the welfare from the global perspective. This confers to the deforestation its
international externality dimension, and implies the need of global sources to
finance the forest conservation.

Indeed, given the nature of this problem, an efficient solution should bring
an alternative source of revenue to the domestic or forestry countries to help
them solve their economic issues leading to the over exploitation of forests.

Following this idea, differential games and optimal control theory have been
applied to prove that financial transfers from developed community (or the
North) to developing countries (or the South), may improve both the rainforest
conservation and the welfare of the domestic country.

Barbier and Rauscher (1994), using optimal control theory, consider lump-
sum aid donations as indirect instrument to conserve the forest by reducing the
necessity to exploit it.

Lump-sum transfers have been, however, criticized as being a passive instru-
ment to combat deforestation. A more active way to use transfers would be to
make the amount of payment conditional to the effort deployed by the recipient
country to conserve the forest.



In this perspective, a transfer that consists in paying a fixed price per unit
of land conserved was proposed by Stahler (1996), using an optimal control ap-
proach and by Mohr (1996) in a bargaining game framework. These authors
raise the point that this kind of dependency between the transfers and the forest
size may, however, has adverse effects in the long run. As the international com-
munity’s willingness to pay is higher when the forested land becomes smaller,
the forestry country can use his “market power” to arise the per-unit compen-
sation through a strategic deforestation behavior. Mohr (1996) explained that,
in this case, the credibility problem about whether the donor community is in-
deed “hard nosed” about the fixed compensation can afford an incentive for the
recipient country to increase his deforestation rate.

Consequently, a transfer payment that penalizes an excessive deforestation
rate in addition to compensating for each unit of forested land conserved may
be advantageous, especially if we consider that the ecosystem biodiversity is, to
a large extent, irreversible.

Such a transfer payment, which makes the recipient countries directly con-
fronted to the results of their land use decisions, was first used in a contract
approach by Van Soest and Lensink (2000), and in a differential game approach
by Martin-Herrdn et al. (2002) and Fredj et al. (2004).

In all these models, the developed community’s main concern is forest preser-
vation, whereas the forestry country’s objective is the maximization of the total
revenues he can extract from forestry and agricultural activities. In other words,
the problem here is that essentially resource managers do not internalize the loss
of biodiversity or the loss of an important carbon sink in their objective func-
tion. What this means is that the benefit of the tropical forests in terms of cure
from cancer and other illnesses and the mitigation of climate change that rep-
resent the concern of developed countries are ignored by the domestic forestry
countries.

Consequently and as it has been proven in the above studies, it should be in
the interest of both developed community and forestry countries to implement
the agreed transfer program. Nevertheless, there is no guarantee that both
players would stick to their respective engagements as dictated by the agreed
policy. One of the players can have the advantage and hence the incentive to
deviate from the initial agreement if he knows that the other player will stick
at his engagement. The strategies implied by the agreement are then no longer
equilibrium.

This calls for the use of incentive mechanism strategies to counter this even-
tual problem. The externality problem in several environmental issues have led
to the use of incentive mechanism design, e.g. Jgrgensen and Zaccour (2001)
use incentive equilibrium strategies in the pollution control problem. Originally
the idea of incentive equilibrium has been developed and applied to resource
management problems by Ehtdmo and Haméldinen (1986, 1989, 1993).

This paper is concerned with the design of incentive strategies mechanisms
that can be used by a donor community so that the forestry countries found it
optimal to choose in equilibrium a deforestation policy which is sustainable in
the long run.



In this work, we assume that the northern community has a real concern
about the forest preservation. Therefore, she can not put her future credibility
in jeopardy by retracting at an intermediate date from what she announced at
the initial instant of the game. Especially that we expect this environmental
agreement to be renewed at the end of the horizon or later on. We, then, exclude
the possibility of deviation of this player.

Unilateral deviation remains, however, possible for the forestry country as
it can be more beneficial for him to receive the compensating transfer without
making any effort of forest conservation. To avoid this problem, the developed
community can use an incentive mechanism to force the forestry country to stick
to the agreed strategy.

The objective of the northern community is that, while maximizing his
stream of revenues, the forestry country chooses a deforestation rate that is sus-
tainable in the long run. The official definition of sustainable development stated
in the Word Commission on Environment and Development’s report (1987) is
“development that meets the needs of the present without compromising the
ability of future generations to meet their own needs”.

To ensure the participation of the forestry country in the program, he should
ensure at least the same actualized revenues as what he can have without the de-
veloped community’s intervention, for the period covered by the agreement. Fur-
thermore, to guarantee the implementation of the agreement once the forestry
country accepts to receive the transfer, the developed community has to make
the transfer dependent directly on the forestry country’s actions regarding the
forest exploitation. The objective from doing so is that the forestry country
finds it optimal to choose in the short run equilibrium the deforestation rate
that leads to sustainable forest stock in the long run. This shows in a deforesta-
tion rate equal to the forest’s natural regeneration, which is typical for renewable
resource case (see, for example, Beltratti, 1995). Our results show that this is
possible and can be implemented using an incentive transfer mechanism where
the amount of transfers is linear in the forest stock and linear-quadratic in the
deforestation rate.

The main contributions of the paper are the following. First, we solve for
both the short-run and long-run equilibria. This allows us to calculate the
sustainable forest exploitation in the long-run and to estimate the loss in the
total welfare the forestry country can bare from a more sustainable exploitation.

Second, we define a transfer function which is composed of a lump-sum
amount, that guarantees the participation of the recipient country while com-
pensating him for the total loss due to a better forest conservation, and of a
conditional part which represents the incentive mechanism ensuring that the
forestry country will respect its engagement of a sustainable forest exploita-
tion. To our knowledge this kind of incentive mechanism has never been used
previously in the sustainable forest management literature.

In contrast with other previous studies in our paper we do not need to model
explicitly the developed community’s utility function which palliates one of the
main criticisms addressed in this literature. Moreover, we consider a different
dynamics of the forest stock as we allow the possibility of regeneration of the



resource.

The rest of the paper is organized as follows. Section 2 introduces the model.
Section 3 characterizes the optimal control solutions for the forestry country
without the intervention of the northern community, under the finite and infinite
planning horizons. Section 4 deals with the issue of distribution over time of the
total payment flowing from North to South and with the design of an incentive
mechanism that guarantees the application of the sustainable forest exploitation
at each time ¢. Section 5 provides a numerical illustration of our results. Finally,
section 6 states the concluding remarks.

2 The model

The original model is settled for the forestry country by Ehui et al. (1990) as
an allocation problem of forested land between forest activities and agricultural
use. The objective is to maximize the present value of a utility index U(-),
which measures society’s satisfaction. The utility index is concave increasing in
the aggregate benefit (), measuring the societal benefit from agricultural and
forestry. This later depends mainly on the forest size, the deforestation rate and
the earth’s productivity.

A detailed and sophisticated specification of this model was proposed by Van
Soest and Lensink (2000), where the utility index is presented as the total net
revenues from agricultural and forest use.

The revenues from forest activities are measured each time ¢t as the wood
production ¢(t) times the prevailed price of timber P(t¢). The timber can be
extracted using clearfelling or selective logging methods. Under the first method
the land is completely deforested and converted to agricultural use. Assuming
that there are n commercially valuable stems per unit of land, the quantity of
timber supplied each period of time ¢, is then equal to n times the deforestation
rate D(t). Under the selective logging method, only a fraction v of timber is
extracted and the quantity supplied each period of time ¢, using this method is
equal to vy times n multiplied by the size of the forest F(t). The total timber
production can be described as follows!:

q(t) =nD (t) + nyF(t). (1)

For convenience n is normalized to unity such that the timber price P (t)
represents the value of all commercially valuable timber per unit of land. The
(inverse) demand function is assumed, following a long tradition in economics
literature, linear and given by

P(t)=P—0q(t), (2)

!n the original specification of the model by Van Soest and Lensink (2000), the timber
supply under the selective method is equal to ny (F(t) — D(t)). As we are working with a
dynamic model we found it more convenient to consider the size of the land not converted to
agriculture use as equal to the size of the forest by this time.



where P is the maximal market price obtained when D(t) tends toward zero
and 0 is a positive parameter.

The agricultural net revenue depends on the size of the land under cultivation
Fy — F (t), where Fj is the initial size of the forest stock; on the agricultural
price which is fixed to P4; and on land productivity Z (t). This later depends
positively on the deforestation rate since burning off the forest cover releases
nutrients that increase the soil productivity in the short run. It is decreasing on
the cumulative deforestation as, in the long run, soil productivity falls because
of nutrient depletion and decreases soil productivity because the farness of forest
cover causes the deceleration of the soil formation:

Z(t)=Z+aD(t) - B[F, — F(t)]. (3)

Combining the revenues from forest exploitation and agriculture activities
the total revenue function of the South is thus

R(t)=P(t)a(t) + PaZ (t)[Fo — F(t)]. (4)

This function shows clearly that there is a trade-off between deforestation and
conservation of the rainforest.

We suppose that the rainforest evolves according to the following differential
equation typical in a renewable resource context?,

F(t)==D(t)+rF(t); F(0)= Fy, ()

where 7 denotes the natural regeneration rate of the rainforest.
The forestry country choosing the deforestation rate aims at maximizing its
stream of revenues actualized at rate p:

/T e PR (t) dt + e PT®(F(T)),
0
subject to (1) — (5) .

Function @ is the salvage value function. The time horizon [0,7] may be
bounded or unbounded depending on whether 7' is finite or infinite, 7' = +oo.
In the infinite horizon there is no salvage value function.

As we can notice this dynamic optimization problem belongs to the well
known linear-quadratic class, since the motion equation of the state variable,
the forest stock, is linear and the objective function is quadratic in both the
state and control variables. The total revenue function of the South can be
expressed as:

R(t) = —a, F (t)* 4+ ayF (t) — asD (t)° + a4D (1) — a5 D (t) F () + ag,
where
a1 = Py + 6072, ay =yP + Py (2,8F0 — Z) , az3 =40,
ay = P+ aPsFy, as =207+ aPy, ag = PyFy (Z — BFU) . (6)

2In the model specified by Van Soest and Lensink (2000), the forest dynamics is the typical
one of a non renewable resource with F (t) = —D (t).



This functional form shows more clearly how the forest stock and the de-
forestation rate affect the instantaneous revenues. a; > 0 and as > 0 reflect
the decrease in the forest marginal revenues when the forest stock (respectively
the deforestation rate) increases. az > 0 and a5 > 0 reflect the decrease in the
marginal revenues of deforestation when the deforestation rate (respectively the
forest stock) increases.

3 Forest exploitation under finite and infinite
planning horizons

In this section we derive optimal solutions for the forestry country dynamic
maximization problem regarding the forest exploitation in the context of finite
and infinite time horizons.

We expect that the optimization problem in the short-run (finite horizon)
leads to an over extraction as the forestry country does not take into account
the long-run impacts of his actions. For this reason we consider as a counterpart
the optimization problem with an infinite horizon, which leads in the long-run
equilibrium to a sustainable exploitation with F'(t) = 0, implying that the
deforestation rate at equilibrium in the long-run will be equal to the natural
regeneration of the forest.

Our objective is to induce the forestry country choosing a sustainable defor-
estation rate while optimizing in the short-run (or finite horizon). In a first step
we derive the solutions of the optimization problems with finite and infinite time
horizons. Afterwards in the next section, we will design the necessary incentive
strategies that can be used by a second part, which could be the northern com-
munity or the developed countries as addressed in the previous literature, that
will enforce the sustainable forest exploitation in the forestry country.

3.1 Infinite Horizon (T = o)

The optimization problem in the infinite horizon planning period is given by

max/ e PR (t) dt,
{D®)} Jo

subject to (1) — (5),

The following proposition provides the optimal solution to the South prob-
lem when an infinite planning horizon is considered. The superscript s stands
for sustainable solution.

Proposition 1 Assuming an interior solution, the optimal control, state and
costate variables in the infinite horizon scenario which lead to a forest stock path



converging in the long-run to the steady-state, F'*, are given by:

Fi(t) = F*+(Fy—F)eld3, @)
M () = M+ (Fo—F)(as(p—2r—A) —as)e23,

1 1
D*(t) = ’r'F*—E(p_A_2,r)(FO_F*)e(p—A)§’ (8)

where F* and \* represent, respectively, the long-run equilibrium or steady-state
of the forest size and its shadow value, given by the following expressions:
* as + a4 (1 — 14
Po= (r =) , (9)
2a1 — 2a3r (p— 1) —as (p — 2r)
—as (as + 2raz) + a4 (ras + 2a1)
2a; —2a3r (p—71) —as(p—2r)’

A*

and A = 4a1+(p*2r)[fli;*27“)a372a5}

The mazimized net revenue per period of time is given by

Rs(t) = Ale(piA)t + A26(p7A)% —+ A3,
where constants A; for i =1,2,3 are given in the Appendix.

Proof. The current value Hamiltonian associated with the problem de-
scribed above is?

H(D,F,\) = R(D,F)+\F
= —a1F? +ayF —a3D? + ayD — asDF +ag + (=D +rF),
where )\ is the costate variable associated with the forest stock F.

An interior solution of this problem must satisfy the first order optimal
conditions given by

HD = —2&3D — a5F - )\+a4 = 0, (11)
F = Hy=-D+rF; F(0)=F, (12)
A = pN—Hp =201 F +asD + (p— 1) X — as, (13)

together with the transversality condition tli)rgo e PIN(t)F(t) = 0.

Since Hpp = —2a3 < 0 the above conditions are also sufficient for this
maximization problem.

Replacing the parameters agz, a4 and as by their original values in terms of
the model’s parameters as defined in (6), and taking into account equation (1)
after few manipulations we can rewrite condition (11) as:

A=P—20g+aPs(Fy—F).

3For the rest of the paper, time arguments are omitted in order to simplify notation, when
no confusion can arise from doing so.



This expression means that the optimal deforestation rate at each time ¢ should
be such that the marginal cost of deforestation (measured by the current shadow
value of the forest) equals the net marginal benefit (the sum of the marginal
income from selling the timber P — 26q and the additional agriculture revenue
aPa (Fy — F)).

The second condition (12) simply describes the dynamics of the forest, de-
creasing at the deforestation rate D, reduced by the natural regeneration of the
forest.

Finally if we replace in (13) the parameters a; (i = 1,2,5) by their original
values given in (6), after some arrangements we can rewrite the time evolution
of the costate variable as

}\:(p—r))\—fy[f’—%q]+l3,4 [Z+aD—28(Fy,— F)].

This condition indicates that the shadow value of the forest increases or de-
creases at rate p—r, depending on whether p —r is positive or negative, reduced
by the net benefits of conserving an additional unit of land. This latter is equal
to the direct marginal revenues of logging it minus the opportunity cost that
is equal to the indirect marginal agriculture revenue that could be earned from
conserving this unit of land which indirectly enhances agricultural yield through
the productivity effect.

From equation (11) we can also extract the expression of D as a function of
the state variable F' and its shadow value A:

1
D:—%(A—a4+a5F). (14)

Replacing this latter in (12) and (13) we get the following system of differ-
ential equations:

. as 1 ay

F = — F+—\N——; F(0)=F
(203 + T) + 2&3 2&3’ ( ) 0

. 1 as asas

A = 201 — —a? | F —r— 1A — as.
( ai %as a5> + (p T 2a3> + 243 ao

Solving this dynamic system taking into account the transversality condition
Jim e PIX(t) F (t) = 0, we have:
— 00

Fo(t) = F*+ (Fy—F*)elr 23,
M(8) = M4 (Fo—F)(as(p—2r — A) —as)ev23,

where F* and \* represent respectively the long run equilibrium or steady state
of the forest size and its shadow value which expressions are given in the state-
ment of the proposition.

Substituting F' and A by their optimal values F'* and A® in (14) we then get
the optimal path of the deforestation rate:

1 4a1 — A—2
Ds(t)Z——()\*+a5F*—a4)+ a1 (L5( T+p)

Fy— F*) elp—2)%
2a3 2(a3(A—2r+p)—a5)(0 e ’




which after some manipulations can be rewritten as in (8).

In order to have the optimal forest stock path converging to the steady-state
F* we need to impose that p — A < 0. This condition is satisfied if and only if
the following inequality applies:

2a7 — 2a3r (p—1r) —as (p—2r) > 0. (15)

This later condition guarantees that the term inside the square root in A is
always positive. Moreover, under this condition the steady-state values of the
forest size and its shadow value are positive if the following conditions are sat-
isfied:

as +aqg (r—p) >0, as4(2a1 +ras) — a2 (a5 + 2raz) > 0. (16)

Replacing, the deforestation and the forest stock by its optimal paths, D?®
and F*, in the objective function, the net revenues from forest exploitation and
agriculture use can be written as

Rs(t) = Ale(piA)t + A26(p7A)% —+ Ag,

where constants A; for i = 1,2,3 are given in the Appendix. =

From now on we assume that p —r < 0, which guarantees the fulfillment of
(15) and the first inequality in (16). The values of the model’s parameters are
considered such that the second inequality in (16) is satisfied.

The asymptotically stable trajectory for the forest stock increases or de-
creases towards its steady-state depending on the initial size of the forest. Under
condition p —r < 0, it is easy to see that the convergence of the forest shadow
value to its steady-state presents the opposite behavior. That is, if the forest
stock increases its shadow value decreases and vice versa.

The steady-state of the forest stock equation (9) can also be written as

’715 + (P + aFoPA) (r—p)+ Py (2ﬂF0 — Z)
2BP4 + 267> —2r0 (p— 1) — (p — 2r) (207 + aPa)
Py(Z+arFy) —(r—p+7) (P—2(r+7)0F)
07 298P, + 2072 —2r0 (p— 1) — (p— 2r) (207 + aPs)

Fr =

If p—r < 0, the denominator of the second term in the right hand side
is positive. The forest size will be decreasing (F* < Fp) if and only if the
numerator is also positive. The comparative statics shows that a higher forestry
revenues induced by a relative increase in the timber price leads to a higher
steady-state of the forest stock. This tallies with the respective result in Ehui
et al. (1990). An increase in the land productivity has however a negative effect
on the steady-state level of the forest size. The effect of a relative increase in
agriculture price is however undetermined and so is the effect of the discount
rate.

10



3.2 Finite Horizon

The optimization problem in the short run or finite horizon planning period
differs from the previous one, as it dictates the use of a salvage value to avoid the
complete depletion of the forest, which implies a new transversality condition.
The optimization problem to be solved is given by

T
max e P R (t)dt + ¢oF (T),
max / () di + 6F (T)

subject to (1) — (5),

where the salvage value function ® has been considered linear for simplicity.
That is, ¢F(T) is the salvage value at the end of the horizon and ¢ the marginal
value of the forest at the terminal time 7.

The following proposition provides the optimal solution to this problem
where the superscript T' stands for bounded finite horizon scenario, with termi-
nal time 7.

Proposition 2 Assuming an interior solution, the optimal control, state and
costate variables in the short-run equilibrium or finite horizon scenario are given
by

A+p—2r)— ¢ —2r—A)as— ¢

FT ()= 4 23 it WY R VEINTR (. a )85 ) 04205 (17)
a; —4aya;3 a; —4aias

AT ()= X" + CreP=2)% 4 Cyelrt D (18)

1 [(A+p—2r)a5—4a1]01 _AVE
DT ()= (a4 =\ —asF* (b=2)
(t) 5as (a4 asF™)+ el —daras) e 7 4
[4(11 — (p—2r—A)a5]C’2 e(erA)%.
2(0%—40103)

(19)

The mazimized net revenue per period t is given by
RT(t) = Bie'® + Bye!(Pt2) 4 BaelrtA)5 L Belr=2)t 4 B (=25 L B
Constants C1,Cs and B;,i = 1,...,6 are given in the Appendiz.

Proof. The first order optimal conditions are given by (11)-(13) together
with the transversality condition A (T") = ¢.

Following the same reasoning than in the infinite horizon scenario the opti-
mal solutions described in the proposition above can be derived.

Inserting the optimal time paths for the control and state variables, D7 and
FT_ in the objective function gives the optimal revenue RT. m

The results in the above proposition are intuitive. Indeed, it is readily seen
from the optimal conditions that the deforestation policy satisfies the familiar
rule of marginal revenue from deforestation must equal its marginal cost, as in
the infinite maximization problem. The interpretation of the results stays the
same as in this later scenario, except that in the finite problem the forest stock

11



path does not converge to the long-run equilibrium where the forest exploitation
is sustainable.

The objective in the next section is to induce the forestry country to choose
the deforestation policy leading to a sustainable forest exploitation along the
time horizon [0,7]. That is, using incentive strategies the donor community or
North wants to guarantee that the South’s optimal deforestation policy is the
one obtained as the solution of the optimization problem when an infinite time
horizon is considered.

4 Total payment and incentive strategies

In this section we, first, focus on the computation of the difference between
the South’s welfare for the finite and infinite horizon scenarios. The donor
community has to compensate the forestry country for his loss of welfare when
using sustainable strategies. How to distribute the total payment over time is the
issue addressed in the first subsection. The second one is devoted to the design
of an incentive mechanism which guarantees a sustainable forest exploitation.

4.1 Distribution over time of the total payment

To encourage the domestic country to adopt a sustainable forest exploitation
rather than using the strategies obtained as solution of the finite horizon opti-
mization problem, the international community is willing to pay the opportunity
cost of doing so. This later is evaluated as the difference between the total net
revenues for the infinite and finite horizon optimization problem from the initial
date to the terminal one 7', actualized at rate p. That is,

JT— g8 = /T e P (RT (t) = R*(t)) dt + e *T¢ (FT (T) — F*(T)) .
0

The last term in this expression assumes that the South uses the same salvage
value function to evaluate the forest stock at at the end of the horizon T
Next proposition characterizes the value of this difference.

Proposition 3 The difference between the forestry country’s welfare for the
finite and infinite planning time horizons is given by:

B 2B T M
T_ g5 _ 22 (AT _ 208 (o (=) F 7L (AT _q)
JI=J" = TBi+— (e 1)+A_p (e 1) NG 1)
2M, —(p+A)E (p—2r—A)ag—as C(p-A)Z
- pR— P )2
Aty (e )+¢ 2 —daras Cse +
[as (A+p—2r)—a5] Cy —(p+A)T
—(Fh—F* p+A) 3 2
< a2 —4ajasz (Fo ))e ’ (20)

where constants My and My are given in the Appendiz.
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Proof. The forestry country’s welfare for the period [0,7], under the op-
timal policies of forest exploitation associated to the finite and infinite horizon
scenarios are respectively

JT = / ! e P'RT (t)dt+e PToFT (T), J* = / ! e PIR* (t) dt+e PToF* (T).
0 0
Therefore, the difference is given by:
JV—Js = /OT e (RT(t)—R*(t))dt+e *T¢ (F (T)— F*(T)).
After some easy computations, the following expression has been derived:

RT(t) — R’ (t) = Blet"—i-Bzet(erA) +B36(p+A)% +M1€(p7A)t+M2€(p7A)%, (21)

where constants B;,i = 1,...3 and Mj,j = 1,2 are given in the Appendix.
The difference between the size of the forest stock at time T under the finite
and infinite time horizon scenarios is:
[as (A +p—2r) —as] C4
a? — 4aya3

T
2

Fra - = ~ (R ) o 4
[03(P —2r — A) - as] Cs e(p"'A)%.

a? — 4aya3

Thus, the integration of the difference in (21) over the time interval [0, 7] and
the addition of the term e=#T¢ (FT (T) — F*(T)) leads to the expression in
(20). m

The total amount .J7 — J* is the minimum quantity the international com-
munity has to pay to the forestry country to compensate the loss of revenues
due to a better forest conservation. To distribute this total amount J7 — J*
over time the international community can use different methods to transfer
an amount S(t) each period of time ¢ to the forestry country. She can choose
different specifications for the function S(¢) such that:

T
/ e P1S(tydt = JT — J*. (22)
0

The first distribution method that we can think about, is to transfer exactly
the difference in the net revenue as calculated at this period, reduced by the
present value of the average difference in the forest salvage value at the end of
the horizon. This means that the transfer at each period of time ¢ € [0,T] is as
follows:

6 [T ()~ e ()]

S(t) = (RT(t) — R*(t)) + e #(TD T

It can be easily checked that this specification for the instantaneous transfer
function satisfies (22).
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However the problem that can arise from this distribution method is that
the instantaneous amount transferred could be negative for some of the periods
during which the difference in revenues that the forestry country can earn by
following the optimal deforestation associated with the finite horizon scenario
(the first term in the right hand side of the transfer expression) is inferior than
the loss in the average salvage value attributed to the forest at the terminal date
T (the second term in the right hand side of the transfer expression).

To avoid this problem we propose as a second method to distribute the
total welfare loss uniformly over time. According to this method, and taking
into account that condition (22) has to be satisfied, the domestic country will
receive each period of time ¢ € [0,7] a fixed amount given by:

Q P T s

By accepting to compensate the loss of revenue of the forestry country, the
international community encourages him to adopt the sustainable strategies
in the short-run without bearing any cost from doing so. Its objective is to
concretize the application of these strategies.

However, this compensation does not guarantee that the domestic country
will not exploit unsustainably the forest, in the sense that as long as his optimal
strategies are different from the sustainable ones the forestry country will be
tempted to continue maximizing his revenue using his optimal strategies at the
same time he will take advantage of the received transfer.

Therefore, the international community has to bring forward incentive strate-
gies to enforce the application of the sustainable strategies. This issue is ad-
dressed in the next subsection.

4.2 The design of incentive strategies

To achieve the goal of sustainable forest exploitation, the international commu-
nity has to control the South’s action, or in other words she has to give him the
incentive to follow the sustainable paths for forest size and deforestation rate.

To determine the incentive program that allows the implementation of such
deforestation policy, we have to examine the new optimization problem of the
forestry country with the transfer received. We want to guarantee that as solu-
tion of this optimization problem the forestry country will choose as new optimal
deforestation rate the one that will ensure a sustainable forest exploitation. In
other words, the optimal path of the forest stock associated to this problem
should be given by F'*® as described in (7).

This objective cannot be reached unless the forestry country is not sure of
the amount of transfer he will receive since it is dependent on his action, mainly
on the deforestation rate and the observable forest size at each period of time.

In other words, the international community will use the transfer as an
incentive mechanism to guarantee a sustainable forest exploitation. The transfer
received by the forestry country at each period of time will be of the form:

ST(t) = S +max{0,S (D, F)}, (23)
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where superscript I stands for Incentive mechanism.

The first term in the right hand side is the lump-sum transfer that guaran-
tees that the welfare of the forestry country is not worst of when the transfer
mechanism is implemented compared to the case where she managed the forest
without any intervention from the international community. The second term
is the non-negative amount of transfer that depends on the efforts employed
by the forestry country to preserve the forest and respect his engagements to
exploit it in a sustainable way.

Following the previous literature (see, e.g. Van Soest & Lensink (2000)
and Fredj et al. (2004)) we assume that S is an increasing function of F' and
decreasing of D. To characterize the exact form that should take the conditional
part of the transfers S (D, F'), we have to address the new maximization problem
of the forestry country while receiving a transfer S(t) as described in equation
(23).

The new net revenue function is equal to the old one plus the transfer received
each period of time t:

R'(D,F) = R(D,F)+S+S(D,F)
= —a1F?+ayF —a3D? + ayD — asDF + S(D,F) + 8 + ag,

Next proposition determines the two point boundary problem that must be
satisfied by any optimal solution to the optimization problem when the incentive
mechanism is implemented.

Proposition 4 Assuming interior solutions, the optimal control, state and co-
state variables of the optimization problem when the forestry country receives a
transfer function as in (23) satisfy:

1 (/88
I B e o YA T AN I NI
D" = 2a3 (aD(D 7F) asF A +a4>; (24)
FI = —-D'4rF'; F'(0)= F, (25)
N = asD' + 20, F' + (p—1) )\I—g—li(DI,FI)—@; MA(T) = . (26)

Proof. The present value of the Hamiltonian associated with the new opti-
mization problem is given by:

H! = —a; F? + a3F —a3D?* + a4D — asDF + S (D, F) + M (=D +rF) + S + a,

where A/ denotes the new costate variable associated with the forest stock.

Assuming interior solution the necessary conditions of the Maximum Princi-
ple of Pontryagin that guarantee the maximization of the new actualized stream
of revenues are given by (24)-(26). m

The incentive mechanism which guarantees the implementation of the sus-
tainable exploitation path is such that F'®, the forest stock path for the infinite
horizon optimization problem, given in (7), is the solution of the system (24)-
(26).
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The dynamic system (25)-(26) can be expressed as a linear system, once the
expression of D in (24) has been replaced, if and only if the conditional transfer
S(F, D) is quadratic.

The linear dynamic system for variables F' and A can be expressed in matrix
form as follows:

F F
MEECIRN R0 (27)
with boundary conditions
F0)=F and X(T) =9, (28)

where both the matrix A’ (t) and the vector B () depend on the specification
of the conditional transfer S (D, F). The conditional transfer function has to
be defined appropriately in order to have as optimal path for the state variable
the sustainable solution. In other words, we impose that F! (t) = F*(t) =
F* 4+ (Fy — F*)e»=®)3 Vit € [0,T], where F(t) denotes the forest stock path
obtained as a solution of system (27).

There may exist many transfer functions that can lead to forest stock paths
satisfying this condition and that force the South to choose at equilibrium a
sustainable deforestation rate leading to the sustainable steady state of the
forest size in the long-run. Among the possible specifications for the transfer
mechanism we focus on a transfer function linear in the state variable F' and
quadratic in the control variable D, as suggested by Van Soest and Lensink
(2000):

S(D,F)=wv(t)F(t) —w(t) D (t) - %DQ (t). (29)

Functions v,w and z are assumed to be positive to incorporate the hypothesis
that the transfer function depends positively on the forest stock and negatively
on the deforestation rate. Let us notice however that this function is different
from the one proposed in Van Soest and Lensink (2000) as the coefficient v, w,
and z are not necessarily constants.

4.2.1 Linear quadratic incentive function

Proposition 5 There exists at least a solution for v (t) ,w (t) and z (t) for the
incentive transfer mechanism given in (29) that forces the forestry country to
choose in the short-run equilibrium a deforestation rate leading to a sustainable
forest path.

Proof. The linear quadratic incentive function given in (29) implies that
g—f, = v (t) and j—g = —w (t) — z(t) D (t).
Expression (24) can then be rewritten as:

_a5FI(t) + M) +w(t) —ay

D'(1) = 2a3 + z (t)
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Replacing D! by its new expression in equations (25) and (26) and using the
matrix notation in (27) we have:

1
AI (t) = [ 2(13-1—2( ) + r 2a3+z(t) ]
20, — m P=T = st

B (t)

w(t)—aq

2az+2(t) ]
l —u (1) — ay — B as) ]
Let us note that both matrix A’(¢) and vector BY(t) are different from the case
without transfers. The matrix A’(¢) only depends on the coefficient function
2(t), while the vector B'(t) depends on all the coefficient functions, v (¢),w ()
and z (¢).

Our purpose here is to find the right expressions of v (t),w (t) and z (¢) in-
terfering in A’ (t) and B (¢) such that F*(t) = F* + (Fy — F*) e(»=2)7 satisfies
the system (27) and the boundary conditions given in (28). Imposing this result,
implies that the following expressions must be satisfied:

(p—A) (2F0_F*)€(p_A)%:<ﬁsz(t)+r>( e (Fy— Fe (kA)%)+%+
%, (30)

A(t):<2 a1 — 2a3+z )> )e<H>é)+<p—r—2a;752(ﬂ> () —
(t)—( 223)“ (2) ® _ as. (31)

From (30) in the system above we can obtain the expression of w(t) as a
function of A(t) and v(t) :

(205 + () (p = A —20) ~203) (Fy ~ F*) , sy _
2
((2as + z (t))r + as) F* + aq — A(t). (32)

w(t) =

Substituting this expression of w(t) in equation (31), after some manipula-
tions we find the following expression for the dynamics of the shadow price:

At) = (p=r)At) —v(t)+ F* (2a1 +ras) — as +

(das + 2r + A= p)as) (Fo = F*) (,_a)
2

5. (33)

Let us note that this differential equation does not depend on functions w(t)
and z(t) but only depends on v(t), the rewarding coefficient related to the forest
stock in the transfer function.

Fixing an expression for v () equation (33), together with the final condition
AT) = ¢ allows us to solve for the optimal path of the new shadow value,
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denoted by A (¢). Replacing A(t) in equation (32) by A (¢), we obtain a new
expression for w (¢) which depends on z(t). Let us notice that we do need to
propose an explicit form of z(t) to find the necessary form of w (t), in addition
to the proposed form of v(t). In fact for each possible choice of v(t), we obtain

infinite possibilities for w(t), depending on the functional form of z(t).
The new path of the deforestation rate involved by the incentive mechanism

is then

asF*(t) + M (t) + w (t) — a4

2a3 + z(t)

DI = 3 (34)
where F(t) has been replaced by the sustainable optimal path F*(t).

Given that the implementation of the transfer mechanism leads the forestry
country follows a sustainable exploitation of the forest, F'(t) = F*(t),Vt €
[0,T], and according to the dynamics of the forest stock described in equation
(5), it is straightforward to deduce that the only possibility to achieve the result
is when the deforestation path coincides with the sustainable deforestation rate,
that is, DI(t) = D?*(t),vt € [0,T]. Comparing the optimal paths of these
deforestation rates as described in equations (8) and (34), we conclude that this
objective can be met if and only if

2a3 [N (1) + w ()] = [2a3 + ()] X* () + 2(t) [as F*(t) — ad] .

This relation between the incentive and sustainable equilibria regarding the
shadow value of the forest, implies that the coefficient functions v(t),w(t) and
z(t) related to the forest size and the deforestation rate in the transfer function
make the sustainable exploitation of the forest possible acting on the shadow
value of the forest. m

Remark 6 The choice of the positive functions v(t) and z(t) must be such that
the corresponding function w (t) given in (32) attains positive values along the
whole time horizon [0,T).

Remark 7 Function v(t) can be chosen constant through the time interval
[0, T, but in this case the functions w(t) and z(t) cannot be, in general, simul-
taneously constant in order to guarantee that the incentive mechanism attains
its objective. In the particular case where w(t) = w,z(t) = z Vt € [0,T], the
transfer mechanism can induce the forestry country to follow a sustainable ez-
ploitation of the forest if and only if the following relationship between w and z
holds:

[(2a3+Z) (p—A—21)—2as] (Fg—F*)e(pfA)% ]
2

w= 2a3+Z2)r + as) F*+as—¢.

4.2.2 Implementability of the incentive strategies

Until now we have focused on the characterization of the transfer mechanism
which guarantees that the forestry country applies a sustainable forest exploita-
tion. The forestry country receives at least a lump sum transfer which ensures
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that his welfare is not worst when the transfer mechanism is implemented than
when it is not (see equation (23)). Then, the South does not have any incen-
tive to deviate from the optimal policy prescribed by the solution of the new
optimization problem when the transfer mechanism applies. Therefore, to en-
sure the implementability of this incentive mechanism we need to determine the
North’s minimum budget required to apply these incentive strategies.

The total amount of transfers which flow from North to South when the
linear quadratic incentive function has been implemented is given by:

T T
/ e~ ST (1) di = / e[S+ S(F*(t), D*(1))] dt =
0 0
T . ,
(1—e#T) + /0 oot [v(t)Fs(t)—w(t)Ds(t)—%(Ds(t)) dt.

The total amount of transfer depends on the specification of the coefficients
functions, v(t), w(t) and z(¢) that determine the linear quadratic transfer func-
tion. Therefore, the final expression of the amount of transfer can be calculated
only once a functional specification for these coefficient functions has been fixed.

The next example shows how the transfer mechanism can be implemented
for one of the simplest specifications of the coefficient functions.

Example 8 Let consider a linear specification for the coefficient function v (t) =
at + b, where a and b are constants.

Solving for equation (33) taking into account the final condition A\(T) = ¢,
the optimal path of the forest shadow value is given by:

t
2 —

A (1) = ﬁtJrHe—(T—t)(p—r) _ (a1 + @r+ A — plas) (Fo = F7) (,-a)

A=2r+p

(241 + ras) (p— 1) F* —a—(p—1) (b+ az)

(p—r)° ’

where
H = - aT +F*(p—r)(2a1+ra5)—gb+a2)(p—7“)—a+
p=r (p—7)
(Fo — F*) (4a1 + (2r + A — p)as) e~ %
A—2r+p ’

Replacing \(t) by its optimal expression N (t) in equation (32) we find

t
2 —

Ba1 —das (p—21)— Raz +2(t))(A—2r+p)@r+ A~ p) Fo— F7) (,—a)
2(A—2r+p)

t — Helr—p)(T—t) (35)

w(t) =

a
p—r

Finally replacing the expressions of F*(t), A (t) and w (t) in equation (34) we
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I _ ’I‘Z(t) * 2a3 + Z(t) _ _ _ oy L(p—A)E
D(t) = <r + Sy z) F das 1 2(0) ((p—A—=2r)(Fo—F")e
— TF*_(p_A_2T)(F0_F*)e(p7A)%.

2

This expression is equal to D* (t), Vt € [0,T], whatever the functional form of
z(t).

To determine the total amount of transfers that the South receives from the
North we assume a constant specification for function z(t) = Z, for all t. This
amount in this case is given by:

(D*(®))*| dt,

N |

T T
/ =Pt ST (1) dt = / e[S+ (at + B)F*(2) — w()D* (1) —
0 0

where w(t) has to be replaced by its expression in (35). After some easy but
tedious computations the above expression can be rewritten as:

17~ z 9 _ aF _ _ _
S +bF* —Z(rF*)*| (1 —e ")+ 1— (14+pT)e P+ HF*(em=PT _e=¢T) 4
o S FY et B (L pT)e )+ HE )
2a(F0—F*) < p+A (P+A)T> _ A p (r—p)T
S0 L (- 1+ Ty T —H(Fy—F*) (e 2 T—erT)4
-G\~ (Fo= 1) )
2(Fo—F™) b+rF*(8a1—4a5(p—2r)+2a3(2r+A—p)(A—2r+p)) (1_67(/’;A)T)+
p+A 2(A=2r+p)
(p—A—2r)(Fo—F*)2(16a1—8as(p—2r)—(4a3+2)(2r+A—p)(A—2T+P))(1—6*”)
SA(A—2r+p) '

5 Numerical Illustration

In this section we provide a numerical example for which the optimal time paths
of the forest stock, deforestation rate and revenues have been computed for the
finite and infinite planning horizon. After that, we show the optimal path of
the transfers which allows the donor community to induce the forestry country
to follow a sustainable deforestation path.

The value of the parameters, which are mostly inspired from Van Soest and
Lensink (2000), are the following:

P = 45000, P4 = 150, Z = 60, Fy = 2000, § =20, v = 0.15, a = 0.1, = 0.1,
p=01,7r=0.2 & =17000,T = 10.

For these values the steady-states for the forest stock and the shadow price

of the forest are:
F*=1717.1, and \* = 25204.
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The time paths of the forest stock, the deforestation rate, the shadow price
and the revenues in the infinite horizon or sustainable scenario are given by:

Fi(t) = 1717.1+ 282.89¢ 93,

D%(t) = 343.42 4 318.53¢70-93¢

No(t) = 25204 — 18682e79-9%,

R(t) = [-5.15e %' 4+ 7.32e %9 4 22.62] x 10°.

For the finite horizon scenario the time paths are:

= 1717.10 + 282.92¢~ %93 — 0.02¢' %%,

= 343.42 — 318.55¢ 99269 4 0.0197¢" %%,

= 25204 — 18684e "% — 0.2872¢" 0%,

= —0.001e"' — 0.01e>%" + 556.84¢" 0% +
[—5.16e~ 185 4 7.32¢ 79938 1 92 62] x 106.

Figures (1) to (4) show these time paths. In all the figures continuous line
corresponds to the sustainable scenario, while the dash line denotes the finite
horizon scenario.
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Figure 1: Forest stock time paths

As figures (1) and (2) show, in the sustainable scenario, both the forest stock
and the deforestation rate time paths are decreasing functions, and converge
towards their steady-state values.

In the finite horizon scenario, as in the sustainable one, the forest stock
decreases during the whole time horizon. However, in the finite horizon scenario
the forest stock path is a convex function during an initial period of time, after
which it becomes concave. That is, for times lower than 3 (see, figure (1), dash
line) the forest stock decreases at an increasing rate when ¢ increases. When
the time variable is greater than 3, the speed of the forest’s stock destruction
decreases as t increases.
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This behavior is a direct result of the deforestation policy applied. The time
path of the deforestation rate is also S-shaped. Hence, it is always increasing
function of time; concave for an initial period and convex afterwards (see, figure
(2) dash line).
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Figure 2: Deforestation time paths

Comparing the time paths for the forest stock under the two different sce-
narios, we notice that the forest stock remains almost the same in both scenarios
until the time is approximately equal to 4. From this point of time to the end
of the horizon (T = 10), the forest stock is always larger in the sustainable
scenario compared to the finite horizon one.

From the comparison of the deforestation rate paths we can conclude that
the forestry country starts applying a stronger deforestation policy in the infinite
time problem than in the finite one. However, this behavior is inverted from
the middle of the time horizon until the end.

x 10

Figure 3: Shadow price time paths

Figure (3) indicates that the shadow price of the forest stock is always in-
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creasing in the sustainable scenario. This behavior can be interpreted as the
forest stock is decreasing, the value the forestry country gives to an additional
unit of forest is increasing. However, the shadow price of the forest stock is
U-shaped in the finite horizon scenario. Even though in this scenario the forest
stock also decreases along the whole time horizon (see figure (1) dash line), the
forestry country when applying a short run policy evaluates less any additional
unit of forest during an initial period of time, after which the evaluation is re-
versed. From the comparison of the time paths of the shadow prices we derive
exactly the same behavior as when comparing the forest stock paths for both
scenarios.

34

3.2F 4

Figure 4: Revenues time paths

The instantaneous revenues in the sustainable scenario increase during an
initial period of time, after which they decrease towards a stationary value. On
the other hand, in the finite time horizon scenario they present an inverted
U-shape, except for a very short initial time period (see, Figure (4)).

As this figure shows the revenues from time 5 are much greater in the finite
horizon scenario than in the sustainable one. The difference between the time
paths of the instantaneous revenues makes it more profitable for the forestry
country to follow the deforestation policy prescribed by the solution of the finite
horizon optimization problem than to apply the sustainable policy.

As we have already noted in Section 4, to encourage the forestry country to
adopt a sustainable forest exploitation, the international community has to pay
the difference between the total net revenues for the infinite and finite horizon
problems from time O until 7" actualized at rate p. This difference amounts
JT — J* = 8.88 x 10° for this example.

To achieve the goal of sustainable forest exploitation the international com-
munity will use the transfer as an incentive mechanism to force the forestry
country following the sustainable paths for forest size and deforestation rate.

The transfer received by the forestry country at each period of time is defined
in (23), where the function S(D, F') is assumed to be linear in the forest stock
and linear and quadratic in the deforestation rate, as established in (29).
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As in Example 7?7, we consider a linear specification for function v(t) = at+b,
where the coefficients a and b are fixed at 50 and 750, respectively. We also
consider a constant specification for the function z(t) = 5 for all £. Under these
assumptions the time path for the transfer function is given by:

ST (t)=[16.81 — 0.86t — (1.45¢ + 3.35)e "% 4 2547185 — 24101 (1070)] 5 107,

Figure (5) shows the time path of the incentive mechanism transfers. The
amount of transfers flowing from the North to the South decreases during a
first period of time. A second period of increasing transfers follows, after which
the amount of transfers starts to decrease again for the rest of the time horizon.

x 10°

Figure 5: Transfers time path

The total amount of transfers the forestry country receives for the whole
planning period [0,10] is 1.03 x 107. Therefore, the international community
has to have at least this budget at her disposal in order to implement this
transfer mechanism.

6 Conclusion

Using a detailed model showing the trade-off between the agriculture and forestry
use of forests (deforestation and agriculture productivity), we showed that the
international community can encourage the forestry countries to participate in
a program aiming at a better forest conservation while compensating him for
the revenue loss he can bare from doing so. We also showed that using incentive
transfer mechanism, the donor community or North can enforce a sustainable
forest exploitation in the short-run. We proved that a linear-quadratic specifi-
cation of the transfer mechanism exists and is a possible solution to this issue.
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7 Appendix

e Constants A;,7 = 1,2,3 in Proposition 1.

(Fo—F*)° (4a1+ (2a5+a3 (2r+A—p)) 2r+A—p))
4 )

A = —
4 (Fo—F~*) (F* (a2 —4aia3) + A" (as+as (2r+A—p))+2asa3 —asas)
2 — 203 ’
N (ag—asF*—=X*) (ag—as F*+X\*)+4a; (—al(F*)2+agF*+a6)
3 = .
403

e Constants C;,i=1,2 and B;,j =1,...,6 in Proposition 2.

o = (¢ = X) ((2r — p+ A)ag + as) — (af — 4aras) ( E]
' (as (A +2r — p) + as) eP=DF + (a3 (A — 2r + p) — as) (AP T’

(az (A = 2r+p) —as) (¢ — A*) + (a2 — 4aras) (F* — Fp) e(P=2)%
(as (A +2r —p) +as) elP=2)5 4 (as (A —2r +p) —as) A+ T’

) =
_Cz (a3a§A202+2Cl (a2 —4aya3) (—4a1+2a5 (2r+p)+as (AQ—(2r—p)2)))

4 (a2 —4ajas)”

By =
C3 (azalA?+ (a2 —4aia3) (2 (as+2a1)+az (2r+A—p)) 2r+A—p))
2= 2 ’
4 (a% — 4a1a3)
B __02 ((a2 —4aias) X\* + (2a2a3 —asas+ (a2 —4aias) F*) (as+as (A+2r—p)))
5 2a3 (a2 —4a1a3) ’

5. Of (a1 +(2a5+as 2r—A—p)) (2r—A—p))
o 4 (a? — 4aya3) ’
C1 ((a2 —4a1a3) X* + (2a2a3—agas + (@2 —4aya3) F*) (as+az (2r—p—A)))

2a3 (a2 —4aya3)

)

Bs=—

B6:A3.

e Constants M;,i = 1,2 in Proposition 3.
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M, =

My=—

C? (4a; + (2a5 + a3 (2r — A — p)) (2r — A — p))
4(a§ —4a1a3)
(Fo — F*)? (4a1 + (2a5 + a3 (2r + A — p)) (2r + A = p))
4 )
C1 ((a2—4a1a3) X* + (2a2a3—asas — (daraz —a2) F*) (as5+az (2r—p—A)))

+

2a3 (a2 —4aya3)

(Fo—F*) (F* (a2 —4aya3) +\* (a5 +as (2r+A—p))+2aza3 —asas)
203 )
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