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1. Introduction

The water crisis is a highly complex problem. It is characterised by its multi-
dimensionality encompassing a wide variety of problems such as water shortage,
water pollution, public health and food security all of which have social, ecological,
cultural, and economic dimensions (Saleth 2002). As the success of any model
depends upon a balance between realism and analytical tractability (Intriligator 1983),
it is no wonder that building a useful model for this highly complex problem is a
challenging task. On the other hand, modelling is a potentially powerful and

promising approach for this issue exactly because of this complexity.

The principal objective of my PhD research is to conduct quantitative policy analysis
with respect to water problems in water-stressed developing countries in order to have

policy prescription for sustainable development.

In this paper a stylised Ramsey-Cass-Koopmans (RCK) growth model is developed as
the analytic model of the quantitative policy analysis. On the surface, the
specification of this analytic model does not seem to be adequate for capturing some
key stylised facts of water-stressed underdeveloped countries, such as vulnerability of
rain-fed agriculture, high unemployment rate, and so on. The fact is that the analytic
model stands as the simplified version of more general model reflecting these stylised
facts. The major roles of the analytic model are (i) to provide a model platform on
which more general model is constructed, and (ii) to clarify policy implications of
these stylised facts on sustainable development by investigating the case without

them.
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The structure of this paper is as follows. Section 2 explains general features of the
analytic model, in particular the specification of two-stage dynamic optimisation
without perfect foresight assumption. Section 3 shows the results of the first-stage
optimisation in which households and private firms optimise their objective functions.
Section 4 shows the results of the second-stage optimisation by the government.
Section 5 presents the qualitative analysis of the predicted optimal time paths. Section

6 provides conclusion of this paper.

2. Outline of the Analytic Model

The analytic RCK growth model is designed so as to be compatible with the more
generalised multi-sector growth model incorporating the following stylised facts of

the water scarce developing economies.
— Irrigation shares vast majority of total water use, often reaching 80 to 90%.

— Production risks of rain-fed agriculture are one of the main causes of rural

poverty and consequently of rural-urban migration.

— An urban unemployment rate remains high with considerable rural-urban

migration in spite of priority public investments in urban modern sectors.

— A lack of safe water access, which is rather common in the rural areas or in the
urban squatter areas, severely undermines the social welfare through various
pathways, via direct and indirect health risks and higher medical and water

expenditure, or via depriving educational opportunities from children.

The compatibility between models means that the generalised version can be obtained
by relaxing some assumptions of the analytic model. More specifically, both models
have essentially the same control variables, i.e. consumption levels of the market
good and domestic water for the household, factor inputs including water for the
private firms, and public investment as well as the water price for the public water
producer. The stylised facts abovementioned are abstracted from the analytic model
in order to have benchmark results based on which we can examine the implication of

each stylised fact.
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The analytic model assumes a closed economy consisting of numerous identical
households and identical competitive firms of which output is the numeraire of the
economy. There exist population growth (as the growth of household size) at a
constant rate vand capital depreciation at a constant rate 6. Further, it is assumed that
a budget neutral government provides water to households and private producers and

collects a volumetric water charge.

The social optimisation process consists of two stages. At the first stage, the
households maximise their utility by choosing consumption levels and the private
firms maximise their profits by choosing the amounts of factor inputs taking the rate
of water charge as given. At the second stage, the government maximises the social
welfare by choosing the rate of water charge and by investing the collected water
charge in public capital that is the sole factor input of water supply service. In
addition to the rationales mentioned in the previous chapter, this specification allows

the government intervention to be dynamically efficient.

Another novelty of the present model is the households’ expectation process without
the perfect foresight assumption. The conventional RCK growth models assume that
the households determine the optimal consumption trajectory by deriving optimal
conditions of instantaneous rates of change of consumption, with determining the
optimal initial consumption. The latter is determined based on the consumption
function derived from the intertemporal budget constraint, with an assumption that the
households can precisely predict the trajectories of the wage rate, the water price, and
the interest rate. The analytic model in this thesis attempts to liberate the households
from this perfect foresight assumption. In this model the households make their
decision of consumption level based on their expectation of the future trajectories of
those exogenous variables, but they do not believe their expectation precisely forecast
them. Instead, the households continuously modify their expectation based on the
realised levels of these exogenous variables. The realised consumption trajectory
satisfies the second-best optimality. At the optimal steady state the second-best

outcomes coincide the first-best outcomes.
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3.  First-stage Optimisation

The first-stage optimisation consists of households’ utility maximisation and firms’
profit maximisation taking the government policy in terms of water price as

exogenously given.
3.1 Household’s problem

(1) Problem formulation

It is assumed that households hold assets as equity shares of the private capital stock.
Population is defined as the labour force population and each person supplies one unit
of labour services per unit of time.' Households earn wage and capital income,
purchase publicly supplied water and manufactured goods for consumption, and
invest in private capital stock. As a result the per capita budget constraint of the

representative household becomes w+rm =c,, + pq, + I, where w is the wage rate,

r is the real rate of return to equity shares, m is the household assets, ¢, is per capita
consumption of the manufactured good, g is per capita domestic water consumption,
p 1s the rate of water charge (water price), and /is the household investment in equity

shares. 2

The equation of motion of per capita equity shares owned by a household is

3

m=1—-vm.” The latter term corresponds to “dilution” due to growth of household

size (Aghion and Howitt 1998; p.14).

These two equations merge into

n'1=w+(r—v)m—cM—qu. (D)

It means that we assume the same proportion between consumption of labour force age person and that of
his/her dependents such as young children and elderly people throughout time horizon. In other words, a person
in our model consists of one labour force age person and his/her dependents. In empirical analysis this
assumption is important.

All variables are time variant, i.e. w(?), r(¢), etc., but time is omitted for notational simplicity.

Superimposed dot means time derivatives. Note that the equity shares do not depreciate though the
corresponding private capital does.
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It is assumed that households’ utility at time ¢ is determined by the discounted sum of
felicities for certain length of period 7.* The felicity function is assumed to be CIES

(constant intertemporal elasticity of substitution) type.’

=" e el s )=

l-o
where c(): the consumption level of flow of satisfaction produced by the household
itself at time ¢, 7" length of planning period, p: the rate of pure time preference, and

o : the elasticity of marginal felicity with respect to consumption.

The underlying assumption is that an immortal household consists of continuously
distributed age groups and that the terminal time of planning horizon continuously
shifts forward. This is a straightforward extension of the utility maximisation
problem of an individual. We have little idea about the length 7 that might be formed
by economic and social circumstances as well as education in the real world.” For the
sake of analytical simplicity 7 is assumed to be infinite, which may reduce the
accuracy of households expectation but not significantly with time discounting.
When we employ a finite 7, say 20 years, we have to specify the terminal condition
for the household assets as well. Both the choice of 7 and that of the terminal

condition are of quite arbitrary nature.

It is assumed that households produce a flow of satisfaction by consuming the

manufacturing good and water.

C(cMaqH)EcM¢qu_(p90<¢<19 ()

where ¢ is a weight of manufacturing good in satisfaction production.

The common notion of “instantaneous utility” is deliberately avoided. In my thesis felicity is analogous to the
notion of ophelimity in the works of Pareto. Pareto defined ophelimity as satisfaction derived from economic
activities which is merely an ingredient of utility (happiness). For further discussion of ophelimity/utility
distinction in Pareto, see Tarascio (1969).

CIES functions are functionally identical with CRRA (constant relative risk aversion) functions. This
specification is advantageous since later we will introduce risks in our generalised models.

In this thesis p- v> 0 and o> 1 are assumed. Arrow et al. (1996) report that majority of studies use values in
the range of 1 to 2 for o

Perrings argues that poverty may drive up poor farmers extremely myopic such that “all that matters is
consumption today” (Perrings 1989; p.20). Becker and Mulligan (1997)’s argument on time preference
formation is applicable to this time horizon determination as well.
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Each household maximises its utility subject to budget constraint taking the water

price as given. Hence the representative household’s optimisation problem at time ¢ is

" (1-0)
Max U(t)zj elpv)s clew (s)qns) ds, subject to
cM-4H t l-o

m=w+(r—v)m-c, — pq, ,and

the initial assets m(?) is historically determined at time ¢.
(2) Optimal growth rate of consumption

The current value Hamiltonian of this problem is

_ (1-0)
H:c(CMlLH)+ﬂ,{W+(F—V)m_CM _qu}’
-0

where A is the Lagrange multiplier associated with household assets m.

Assuming an interior solution, the necessary and sufficient conditions are as follows."

OH o o g (3a)
oc,, Cy

Iy lI-o
H _o = pa=(1-9)< (3b)
oqy qy

- oH '
/1—(/?—‘/)/12—% = %=—(F—P) (3¢)

In addition, the transversality condition is lim [e_(p 20 J(s) - ﬁ1(s)] =0
§—>0

From (2), (3a) and (3b) we derive

4 I-¢
. “¢,and ¢, =| L e, 4
du (l_wJ p ¢ Cu —p p c “4)

¥ Since each of the objective function and the constraint is a concave function associated with a negative
semidefinite Hessian matrix, the Mangasarian Sufficiency Theorem (Mangasarian 1966) can be applied.

9« denotes the first stage solution.
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By putting (4) into (3b) we have A :go("(l—(p)l_(” p’(l"/’)c"’. By taking time

derivative of the both sides with logarithmic transformation, we obtain

)£ _ <. From this equation and Eq. (3c) we derive the optimal growth

Z:_(l_(op c

rate of consumption as

c o )4

- Lir-p)-0-0)2}. O

The difference between this result and that of the standard RCK model lies in the far
right term. There exists some negative effect of the water price rise on the
consumption growth. The larger the weight of water consumption in satisfaction
production (1-¢) is, the severer this effect is. It might be plausible that the developing
economies would be more sensitive to this negative impact of water price rise on
consumption growth, due to higher share of water expenditure among the total

household expenditure.

(3) Optimal consumption level

In order to determine the optimal consumption level, we need to construct the
consumption function based on the intertemporal budget constraint. With the

optimality conditions (4), the equation of motion of the household’s assets becomes

m=w+ (7‘ - v)m —blpl_goc , where b, = o ? (1 _ (0)*(1*@ 0.

The solution of this differential equation for the period between ¢ and ¢ + T is
e+ T)e T () [ ()= by p )} el O s

When we take the limit as 7 approaches infinity, the left hand side becomes zero from

the transversality condition. Thus, the intertemporal budget constraint becomes

o0

b, J’:O {P(S)}l—w c(s) o Hlre)vide 4 m(t) + J' ws) ol vl g

t

The left hand side is the present value of the household’s total spending, while the

right hand side is wealth defined as the sum of the disposable assets and the present
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value of wage income. The following expression of consumption is obtained by

solving Eq. (5).

c(s)= c(t){M}b2 exp[i I: {r(z)- p}dr} , where b, = =0 0.

P(S) o}

From these two equations we derive the following consumption function of the
“clairvoyant” household who can predict the future trajectories of w, r, and p

perfectly.

o(t)= n(t)[m(t) [ wls)e {F(T)V}drds} , where

-1

(p(s))13 e -t (2has ds} ’

o0

t

0)=| b {p(0) |

in which b3EW>O and b4EV—£ and b550-_1>0.
o o o

The term 7(¢) is the propensity to consume out of wealth at period ¢. It is noted that the
clairvoyant households need to use the consumption function only once when they
choose the initial consumption at ¢ = 0, then they just need to change the level of
consumption based on the optimal consumption growth rate expressed as Eq. (5) in

order to achieve the first-best optimality.

Now let’s relax the perfect foresight assumption. Instead, it is assumed that the
households’ expectation about the trajectories of exogenous variables is that they are
constant at their current values.'® With this assumption the following proposition is

derived.
Proposition 1: Optimal consumption level

If »(f) > vis satisfied, the optimal consumption is given as

19 1t is also possible to incorporate past information in the expectation formation process. For instance, the
expected trajectory might grow at constant rate estimated based on the past growth rates. I feel, however, that
this kind of sophistication is of ad-hoc nature anyway and its rewards might not be enough to compensate its
costs.
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0 —{bsr(t)‘b4}{m(t)+ﬂ}.

b ) () -v

Otherwise &(¢) diverges towards either negative or positive infinity.

Proof: See Appendix Al.

In the following analysis, » > v is always assumed. Now ¢&(¢)is determined solely by
the contemporaneous values of exogenous variables. Though the trajectory of é(¢) is

different from that of the clairvoyant households’ optimal unless the economy is at the
steady-state, it is the optimal trajectory of the household consumption given the

expectation formation process.

3.2  Firm’s problem

We assume that the representative firm’s production technology is described as the

following Cobb-Douglas production function with constant return to scale.

Y= F(K,Qy.L) =K’k 0, /0 L7

where Y: output, K: private capital stock, and O, water input, L: labour input, and

Pk, Po, and Fr: factor shares of private capital, water and labour with Sk, fp, B €
(0,1) and S + o+ fr = 1.

The constant return to scale assumption enables us to express the above production

technology in the following intensive form.

y=fkequ )=k 4,72,
where y: per worker output, k: per worker private capital stock, and g, per worker

water input.

The firm’s per worker profit is

m=y—(r+0)k—pgy -w, (6)
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where 7is per worker profit and p is the water price."’

The representative firm maximises per worker profit by setting the partial derivatives

of 7 with respect to k and g, at zero, taking » and p as exogenously given.

Z_0 = Pry=(r+6)k,and 2Z -0 = B,y=pg, )
ok 0q s
From the per worker production function and the above optimal conditions we can

express y and ¢y, as a function of £ and p.

1
1 .
y= ,BQbspfbsklh 5 and 9y = ﬂg%pﬂgflkm , (8)

whereb6zlﬁ% >0 andb7z%>0.
Y Y

3.3 Market equilibrium

The equilibrium of the labour, the capital and the good markets is achieved by a set of

prices 7 and w" such that these markets are clear.'

The equilibrium wage rate w™ clears the labour market such that per worker profit
equals zero and total (labour force) population equals number of total workers. Hence,
at the equilibrium per capita values and per worker values coincide. By putting Eq.

(7) into the per worker profit function (6) with applying the zero optimal profit

condition, we obtain the equilibrium wage rate as w*= 8,y = f3, ﬁQb6 p ekt

The equilibrium rate of return to private capital » clears the private capital market
such that the supply and the demand of aggregate capital coincide. If the labour

market clears at the same time, # is determined such that per capita household assets

become equal to per worker private capital stock, i.e. k = 7.

' See footnote 4. Too compensate the depreciation of capital the rental price of capital must be  + & (see, e.g.
Barro and Sala-i-Martin 1995: p.69).

12" Since the market good is numeraire its equilibrium price is always unity.
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Since the private firms can realise their optimal output with ¥, we can express rasa

function of & and p from Eq. (7) as
By
>0.

r*:ﬂKﬁQbﬁp"’6l€"’8 -8, where pg =

3.4 First-stage solution
By putting w" and r" into the optimal consumption level in the proposition 1 and

substitute /7 with & , the optimal consumption can be expressed as follows.
(€))

by J

b f;=bs _p,
9)(1+ e
By — by pTk™

Bo
o-1 -8,
( ):BKIBQ Q>O,and
o

where b955+v—5+—’0, by

fo
by, =(6+Vv)Byhet >0.
The following equation of motion of the private capital is derived from equations (1),

(4) and (7).
k=(1-p,)p—(5+v)k-bp2¢, k(0) = ko (= mo, given).

From the above equation of motion with the equations (8) and (9) the optimal growth
(10)

rate of private capital becomes as follows.
by (pP k™ Y = by ok +b N

= oI s 2 gt (3 p). RO) = ko

O-(ﬂK — by pPsk® Jpleks

Po

>->| .

where by, = (8 +v)(5 + p)fphot >0,
by =(5+V)By +(5+ p)1=By)>0,and by, = B (1- B, )Bp150 >0
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Taking the trajectory of the water price as exogenously given, the private firms

determine the optimal stock level of private capital based on this equation. Let’s

by&? —b;3& +byy _
o(fx _b11§)§

introduce &= p” k% and rewrite Eq. (10) as p* (&)=

B
The condition » > v and r*= g, ﬁgﬁf -1 _ 5 determine the domain of (&) as

ﬂK &_ 13
0<§<§+VﬁQlfﬂQ :é:max'

Within this domain, the following lemma holds.

Lemma 1:

The sign of growth rate of capital is determined by the following rule.

$* (&) 0, ifandonlyif ¢& - g = P ﬁQlf%,
>

ANV

Moreover, lim ¢*(&)=c, and lim ¢*(&)=-ow.

-0+ &>Cmax—

Proof': See Appendix A2.

Now we examine the effects of the water price on the trajectory of 4. Remind that

p(f) does not affect k(¢) although p(¢) affects the growth rate of k(). It means that we

can freely change &(¢) by setting proper p(¢) regardless of the level of Ig(t), if there is

no supply side constraint. Based on this fact, we derive the following two

propositions from the lemma 1.

Proposition 2: Operational principle of controlling water price

If there are no supply side constraints on setting the water price such as water
production capacity limitation, the government can achieve any desirable growth rate
of the private capital stock through controlling the water price based on the following

operational principle.

3 We exclude & = 0, which requires either k or p is zero, from the domain.
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5.
N

~
SN

0, ifandonlyif p(¢)

ANl V
VIl A
iy
>
>
~~
~
=L
=
o)

Proof: Since we can freely change &(¢) by setting proper p(¢) regardless of the level
of lg(t), the lemma 1 guarantees that we can control the growth rate of lg(t) from the
negative infinity to the positive infinity by choosing & (7) through setting p(?),

regardless of the level of k(r).

O.E.D.

Proposition 3: Stability of the steady-state
If the water price is set at constant, k() and ¢(¢) converge towards the steady-state.

Proof: Assume that the constant water price is such that &) < £ . Then the lemma 1
tells that lg(t) grows at positive rate and consequently &(7) increases towards & . And

vice versa. Thus the steady-state is globally stable within the domain of ¢'(&). Since

¢(¢) is a function of lg(t) and p(?) only, at this steady-state ¢(¢) becomes constant.

O.E.D.

Finally we derive the following proposition from Eq. (9) and the lemma 1.

Proposition 4: Steady-state optimal consumption

If there are no supply side constraints on setting the water price, the government can
induce any desirable level of the optimal households’ consumption by setting

appropriate constant water price.

Proof: Recall that the steady-state level of the optimal consumption is given by Eq.

o (1gte
é:k(blo‘f bg)(l+ AL _szlsp [1 ? ﬁLJ,where
Px —bis

- ol B o
bis=p?(1=9) (5 +p) 5 Px b Bob (p=V)Bx +(5+p)BL}>0.
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Since the exponent of p is not zero but strictly negative, any positive steady-state

optimal level of ¢ can be induced by setting a proper constant price of water.

O.E.D.

These three propositions might be of policy makers’ interest. For instance, if the
economy is free from the water scarcity problems and the government has discretion
in setting the water price, the propositions 3 and 4 tell that the government can induce
any desirable household consumption level by setting the water price based on the
equation in the latter proposition. Needless to say, these “desirable” results are largely
due to the strong assumptions such as full employment or full market equilibrium
which are rarely found in the real world, above all in the developing economies.
Nevertheless, these propositions provide a useful benchmark based on which we can
investigate the outcome of relaxing each assumption. Moreover, they facilitate
analysis of supply side problems which are particularly important in the water-scarce

developing economies.

4.  Second-stage Optimisation

4.1 Water production

As in the case of private goods production, we drastically simplify the actual
processes consisting of water production, e.g. harnessing raw water from the natural
hydrological cycle, water purification, transmission, and so forth into the aggregate

water production function Q = F" (G), where Q is an aggregate water production and

G is an aggregate public capital stock.

Weitzman (1970) argues that social overhead capital including sanitation facilities,
irrigation and drainage facilities, and water supply facilities are belonging to “the
sector” characterised by very high capital intensity. This might justify the above
specification. Note that here we use an aggregate production function because water

constraint is manifested not in per capita term but in absolute term.



University of York, S. Kojima 15

Another basic feature of the f sector discussed by Weitzman (1970) is substantial
economies of scale due to indivisibility and cost lumpiness in this sector. This is
perfectly relevant to the case of water production, which is often associated with
large-scale facilities such as dams, treatment plants and pipelines (Young and
Haveman 1985). Hence the shape of the water production function might not be

smooth but kinked at several points as illustrated in Figure 1.

0

Qsfprmmmmmmmmmmm e
Qsf---

O

0 Gi1 G2G3 G4Gs G

Figure 1 Conceptual illustration of water production function

Here some clarification may be necessary. In our model setting it is necessary to
interpret this function as the relationship between public capital stock and capacity to
produce clean water on condition that water sustainability is not endangered. Thus
the necessary public capital covers not only narrowly defined water supply costs but
also wastewater management costs indispensable to maintain water sustainability. On

this ground our model sets aside the water quality issue.'*

When the supplied amount of water is smaller than (), harnessing water from
hydrological cycle is technically easy and water related capital might be divisible. To
supply more than Q; we might need to install some large-scale facility, e.g. a large
dam, of which construction requires certain amount of capital corresponding to G, -
G). Only after the installation of this facility it is possible to increase water supply

capacity up to Qs by further capital accumulation (section between G, and Gs). In

' Though analytical tractability and logical coherence is maintained by this assumption, an empirical
applicability of the model is significantly reduced. An explicit treatment of water quality is a formidable but
urgent issue to be tackled in the future.
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other words, the marginal product of water with respect to G is zero between G, and
G, (i.e. dF"/dG =0). After repeating this process several times we will reach certain
upper limit of water quantity (Qs) harnessed from natural hydrological cycle without
violating sustainability of ecosystem. Though it is possible to increase water supply
capacity above this quantity by introducing water recycling, desalinisation of sea
water, water import, and so on, it is highly likely that the marginal water product of
these technologies be very low, as is shown in Figure 1. Note that we assume the
water production function is twice continuously differentiable at any point for the

analytical purpose.

The water balance constraint can be expressed as
Noe"(qy +q4 )< F"(G), (11)
where N, is the initial population.

The left hand side is an aggregate water demand, while the right hand side is the water

supply capacity.
4.2  Government

It is assumed that the budget neutral government collects volumetric water charges
from both households and firms and it spends all the collected charges for public

capital investment (I°).
P(qu +qu )Noe" =1°. (12)

The assumption that the government undertakes water service is not only justifiable
considering the natural monopolistic feature of water provision but also realistic in
most developing countries. In the context of closed economy assumption the
assumption of budget neutral government is sensible. From this assumption the

equation of motion of the public capital becomes

G=1°-6G=p(q, +q, )Nye" —5G . (13)

The aim of the government is maximising the “intra-generational” social welfare of

the current generation by choosing water price with observing the sustainability
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condition. Since we assume identical households, the government problem can be

expressed as

- &k, p) .
Max I e pn AOP) gy subject to (14a)
p 70 1-
G =pliy k. p)+ Gy (k. p)INoe" - 5G, G(0) = G, (14b)
k = kg (£, p), £(0) = ko, and (14c)
FW(G)—{(}H(Ig,p)+éM(l€,p)}Noe” >0. (144d)

The corresponding Lagrangian consisting of the current value Hamiltonian and the

water balance constraint is

(7 \1-o)
20 <ol T ol p)e o o p e -6} it i p)

+OF" (G)~ iy (6. p)+ g (6. p)INye” ]

where yG, yk and @are the Lagrange multipliers associated with G, £ and the water

constraint, respectively.

Assuming an interior solution, the necessary and sufficient conditions are as

follows. "

A

LC el s A 94y . 04
86_1920 = ¢ 5+ﬂG(qH+qM)+(ﬂGp—@)(—H+—M Noe"

d op
Ak
+ k9P (15a)
op
) L £0° oF" @
G _(r_ G _ _ _— —y— — 15b
L% —(p—v)u G > o p+o-v 3G ut (15b)
oLS Aa¢kj 6
(ot =L -k:( —v—gh |
i =(p-vu P at=\p ¢ v
Gy . 0q j
G H M vt
- p—@)(—A + M INye (15¢)
lu ok ok )"

'S This problem satisfies the Mangasarian Sufficiency Theorem (1966). See footnote 8.
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The Kuhn-Tucker condition for the water constraint is

@20, F¥ (G, +d, )Noe" 20, OF" —(G, +d, )Nye" }=0. (15d)

Note that @1is zero only if the water constraint is satisfied with strict inequality. The

transversality conditions are

tlim[e’(p*")’ u1(1)-G(1)]=0, and (15¢)
tlim[e*(p"’)t 1k () k(t)]=0. (15f)

4.3 The optimal trajectories

It is known that each Lagrange multiplier represents the shadow price of its

corresponding constraint. Since G and k are the same good, the ratio of their shadow
prices in aggregate term is unity along the optimal trajectories. Otherwise it is
possible to achieve higher social welfare by allocating more capital good to invest in

either capital with higher shadow price. Hence the optimality requires yG =

L

vt
Nye

= U

The necessary conditions for the optimal trajectories are depending upon whether
water supply capacity exceeds water demand (i.e.® = 0) or not. These two cases are

separately analysed.

(1) Casel: ®=0 (Water supply capacity exceeds the demand)

In this case the optimality condition (15b) determines the optimal value of u
as u(t) = p(0)e'® A" . By putting this and @= 0 into another optimality condition

(15a) we have

~ A ~ k
6 L (O Gy + g )+ p Dy P |y g OO L (16)
op op 0Op op

where K = kN, ,e” : economy wide aggregate private capital stock.
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By taking time derivative of the both hand sides of Eq. (16) with logarithmic

transformation, we obtain

d . [~
Eln(c—(’cp)
. . k
_ 4y — (0N, PN (G, + Gy )+ p O, %u |, g 9P| (17)
dt d op p
The left hand side of (17) becomes
d (o : k
Eln( cp):(gpp —Ggp)§+(gpk —agk);,where (18)
A a’\ A~ D a,\ N
£ Eﬁﬁ, e Ei? , gksafi, and ¢, = Cf’iz the elasticities of
Poope " ope, ok ¢ ok ¢,

consumption and marginal consumption with respect to price or private capital

stock.

The right hand side of (17) becomes

- N k
ilnl:_ /u(O)NOe(zhp)z{(qAH + éM)+ p(aqH + aQMj+I€ o¢ }}

dt op op op
d . . - og"
=(é‘+p)+Eln{(gp +1—(o)qH —beq .y +Noewk%}

(5+ p){(&‘p +1—¢))@H —beGyy }+(5+ v+ p)Nye kol
(gp +1—(p)c}H —beq +N0e”l€¢§

J’_

{(l B (”)(ng — ¢)+ Epém }QH +bedu /(1 _ ﬁQ )+ NO€W}€¢;€?§; (ﬁj
(‘917 +1_(0)6H —bequ +N0e"l€¢§ p

(19)

J’_

A k
k;\ 9

(gp +1—¢))&H —beq +Noe‘”’l€¢§

% p Pk _ 99" &% E%

8¢§ _ 6¢§ I:T

where ¢, = = — |
g Lok o)

A

P
op ¢ ap T op gk

From (18) and (19) we obtain the differential equation of the water price.
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P_ o (l:t,p)z B (k,p)+ leg,p)w(l;,p) where (20)

A k k
+b6(8pk — 0y, —b7)c?M +Noe"’k¢p(1+5k”), and

B3(A’p)E {(l_w)(gpp —ng +¢)_ O-gp(‘gp +1_§0)}QH

n ) ok

1
_b{gpp -0, + o

The optimal trajectories are determined by the following system.

P _ 4 (k. p), p(0) is free, and (21a)

SESE

%: (k. p). £(0) = ko given, 21b)

This system does not contain the differential equation of G and the stock level of G is

unilaterally determined by (14b).

The transversality condition implies the following proposition.

Proposition 5: Transient nature of the optimal path with ©@= 0

The trajectories determined by the system (21a) and (21b) are optimal only in the
short-run due to the fact that they cannot satisfy the transversality condition (15d).

Proof: By taking integral of the both hand sides of the equation of motion of public

capital, we obtain

_ —& [t A ~ 5+V)s
G(t)=Gye™ + Nye 5"[0 PGy () + Gy ()} ds

Putting this and z(¢) = 1(0)e'®™*#) into the transversality condition, we have
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i) a(0)” - {Goe™™ + Noe ™ [ plas + 0 BV

t—>0

~ (0)G + Oy tim| [/ p(as + 9, k1" ds | =0

As the integrand is always non-negative, this condition cannot be satisfied unless z40)
is zero which requires either zero consumption or zero marginal consumption with
respect to price from (15a). The former cannot be the socially optimal while the latter
case seems a trivial exceptional case where water pricing does not affect water
demand. On this rationale the case £(0) = 0 is precluded from the analysis. Hence the

trajectories determined by the system (21a) and (21b) cannot satisfy the transversality

condition.
Q.E.D.
(2) Case 2: @> 0 (Water supply capacity equals to the demand)
When @> 0 we have the following equality.
F" =(qy + G Noe" (22)

In this case @ = pu holds, since the shadow price of relaxing water balance
consumption means the social benefit of providing additional water of which relative

price to the capital good is p.

With @ = puand Eq. (11), the necessary and sufficient conditions (15a) and (15¢) are

transformed into

i ? + y(FW + Noev’léqﬁ}’,f): 0, and (23a)
/4
b5 _ar” 23b

With the familiar technique the following equation are derived from (23a).
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AW
b o ik ) (1+g ”)K kta
o p r W >k pk k W =k A
B FWeG g_ Vk¢§ (24)
F" +K¢s G F" +Kg)
w
where ¢, = de FiW: the elasticity of the water production.

By substituting Eq. (22) into Eq. (14b) the following differential equation of G is

obtained.
. w
g _ % _5=¢G(G, p), G(0) = Go (given). (25)

From equations (23b), (24) and (25) the differential equation of p is derived as

F'{(l-&5)0 —v+ p}+ Noe"'kg! {(1—5G)5+ p—5G¢G}
(FW +N0e”l€¢; Xgpp —O'Ep)—é‘z']:Noth1€¢§

ASRIENY

A k A
(FW + Noe" kg, Xgpk - o, )— (1 +e&.” )Noe”k¢£

" =92k, G, p)- (26)
(FW + Noe”l€¢§ Xgpp —Jgp)—gi'ﬁ NOe”l€¢§ ’ ( p)

The optimal trajectories are determined by the following system of the differential

equations.
G 44(6(0).ple). GLO) = Go (given), (272)
%: ¢7 (lg(t), G(z), p(t)), p(0) is free, and (27b)
(27¢)

%: = ¢* (é(t),p(t)), k(0) = ko given.

The transversality condition imposes the following condition to have the long-run

optimal paths.
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Proposition 6: Condition to have the long-run optimal paths

There exist the long-run optimal time paths if and only if the stock of public capital

G(¢) satisfies ¢ (G(t))>1 as t goes to infinity, along with the trajectories determined

by the system (27a), (27b) and (27c¢).

Proof :  The proposition 5 proves that the long-run optimal time paths must be
determined by the system (27a), (27b) and (27¢). The condition for such time paths to

be the long-run optimal is to satisfy the transversality condition (15d) which requires
that the rate of change of ¢ (¥ u(t)-G(¢) is kept negative as ¢ goes to infinity. It

means that along with the trajectories determined by the system (27a), (27b) and (27¢)
the following inequality has to hold as 7 goes to infinity.

. . w
%m{e@vﬁ ult)-G(0)}= _(p_v)+§+€:£(1_%)<o

The above condition requires ¢, (G(¢))>1 as ¢ goes to infinity.

O.E.D.

Recall the general shape of the water production function. We may need to keep the
stock of public capital less than a certain level such that the necessary condition in the
proposition 6 is satisfied. This requires non-positive growth rate of G in the long run.
The proposition 6 rules out an infinite growth of water production capacity, which
consequently precludes the possibility to maintain non-declining per capita

consumption with positive population growth for the infinite time.

5. Qualitative Analysis of the Optimal Time Paths

The raison d’etre of the analytic model lies in its ability to investigate qualitative
properties of the optimal trajectories such as stability of the singular point
(steady-state) and structural stability of the system. For such an investigation it is

necessary to find the optimal steady state(s) of the system.
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The proposition 5 dictates that the optimal steady-state(s) must be associated with @>

0. Hence the optimal steady-state(s) of the system must satisfy the following system

of equations.
G PFW
- —-56=0 28
¢ G (28a)
,- F'{(1-¢5)0 —Av+p}+Noe“‘k¢,’§ {(f_gG )f+p}: 0 (28b)
(F* + Nye kgt e, -0z, )— &% Noe g
~ \2 ~
¢k _ blz(pb6kb8) _l7l3l7b6kb8 +byy —0 (28¢)

U(ﬂK _bllpbél;b8 )Pbﬁlgbs

Let G, p* and £" denote the optimal values of referent variables and G , P and k

denote their optimal steady-state values.
Proposition 7: Optimal steady-state

Along the optimal trajectories determined by the system (27a), (27b) and (27c), there

exists at least one optimal steady-state if and only if

(a) The population growth rate vis 0, and

(b) G is such that gG(G*)=1+§.
Proof : 1t is clear from the water sustainability condition (22) that the optimal
steady-state could exist only if v= 0. When this condition is satisfied, Eq. (28b)

(l-eg)+p
s 5 -1
(gpp ¢ )_ €p {1 + FW/(K¢15 )}

becomes =0. Assuming that the denominator is

non-zero, this condition is satisfied if and only if &, = 1+§. This equation, which

also satisfies the transversality condition from the proposition 5, determines the

optimal steady-state level of public capital stock G . Subsequently Eq. (28a)
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determines the optimal steady-state price p as p = FiG_ and finally the optimal

(G

)

_ _ e g
steady-state stock level of private capital k is givenas k=& 7 (p) 5, .

O.E.D.

Recall the shape of water production function in Figure 1. There could be more than
one values of G satisfying the condition (b) in the proposition 7. It means that there
could exist more than one optimal steady-states depending on the shape of the water

production function.

Due to nonlinearity of the original system defined by Equations (27a), (27b) and (27¢)
it is difficult to analyse global stability or instability of the optimal steady-state. If the
optimal steady-state is partially stable, which is frequently observed in the optimal
growth models, the Liapunov’s second method does not work (Gandolfo 1997). In
fact an application of the second method with a Euclidean distance function as a
candidate of Liapunov function results that the time derivative of this candidate is
neither positive nor negative definitive, which is consistent with partial stability.
Hence we focus on analysing the local stability of the optimal steady state by

linearisation method.

As this system is autonomous, the following linearised system near steady state is
certainly a uniformly good approximation to the original nonlinear system (27a) -

(27¢) around the optimal steady state (Gandolfo 1997).

G G
%:A(x—xe), where x=| p |, x¢=| p |, and 4 is the Jacobian matrix of the
k k

original system evaluated at the optimal steady state, i.e.

[0G¢C  0G¢S 0G¢Y |
GGP app algp A4, A4, O
A= al;gz 0pa¢2 5p¢A2 Ay Ay Ay | where
/4 ok
a];¢k 6/€¢k a];¢k 0 Ay, Ay
L oG op ok J(x=x9)
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beb 26,5(5 + p ) G )
Ay =206 5 oz b, 428 ( '2"/9) ﬂL+5+P 1— 5G_ ’
D bigp oy bebys bebisK

beb, 7 26.5(5 + p) G )
A23E 816 [Epk_o_gk_{b7+ 8 ( +p) ﬁL}(l_ 5G j ]’

b16pzo'ﬂl< b6b16E

Ay, =—bghs —<0,and Ay; =-bgb <0,
p

il’l Wthh b16 = (5+p){pﬁ[< +(5+p)ﬂL} >0,

pPoPy

25
b, 52_£+ B Bo

P (1 - Py ){PﬂK + (5 + P)ﬂL}

— N
_ _ oG 16
Dlzgpp_o_gp"'bw(l_%bw[?J :

, and

The following two propositions summarise the local stability of the optimal

trajectories around the optimal steady-state(s).
Proposition 8: Structural instability of the optimal steady-state

Along the optimal trajectories determined by the system (27a), (27b) and (27¢), their
exist bifurcations (threshold parameter values) at which qualitative changes in the

local stability properties of the optimal steady-state(s) occur.'’

Proof : The local stability properties of the linearised system around the optimal
steady-state are partially determined by the signs of the determinant and the trace of
the matrix 4 (Gandolfo 1997). To prove the existence of bifurcation it is enough to

show that the sign of determinant of the matrix A4, denoted as det 4, depends on

'® For the derivation of the matrix 4, see Appendix A3.
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parameter values. By its definition and due to the fact that A4;3=43 = 0,

det A= A, (Ay, Ayy — Ayy A, ) — Ajy Ay, A5, Which is evaluated, after some algebraic

d*F"
dG?

manipulation, as bi)ﬂ{ (6 + p)-pG
G

1

}. Due to the assumption of

diminishing marginal water product, the sign of det A depends on the sign of D, As
shown in Appendix 3, the sign of D; is indeterminate unless parameter values are
given. As a result, the sign of det 4 is affected by parameter values as well as the

optimal steady-state values.

O.E.D.

Due to this structural instability it is necessary to set parameter values for studying the

local stability properties. The following parameter values are chosen as the base case.

o (elasticity of marginal felicity): 1.7

— @ (weight of market good consumption in satisfaction production): 0.6
— O (depreciation rate): 0.05

— p(rate of pure time preference): 0.05

— fk (factor share of private capital in market commodity production): 0.4
— Jpo (factor share of water in market commodity production): 0.3

— [ (factor share of labour in market commodity production): 0.3

Proposition 9: Local stability of optimal steady-state in base case

Assuming the base case parameter values, the matrix 4 has always one unstable and
two stable eigenvalues regardless of the number of the optimal steady- states. Hence
it is possible to put the economy on a stable manifold towards one of the optimal

steady-states by choosing proper initial value of the rate of water charge p(0).

Proof: See Appendix A4.

It is difficult to assert the robustness of the proposition 9 because it depends on the

combination of parameter values. Moreover, except for few cases including the base

'7" The definition of bifurcation is from Gandolfo (1997).
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case, the local stability conditions involve not only parameter values but also the
optimal steady-state values. Nevertheless, an unsubtle sensitivity analysis, in which
each of parameter values alone is changed from the base case values, was conducted

to illustrate its robustness. The results of sensitivity analysis are shown in Table 1.

Table 1 Results of Sensitivity Analysis
Parameter Valid range Remark

o > 162 If o £1.61 the sign of D, is indeterminate
- unless the optimal values are obtained.
<065 If ¢ > 0.66 the sign of D, is indeterminate

¢ - unless the optimal values are obtained.

S <0.05 If 6 > 0.06 the sign of D; is indeterminate
- unless the optimal values are obtained.

p >0.05 If p < 0.04 the sign of D, is indeterminate

unless the optimal values are obtained.

Bl fc=0.4 | Entire range _

If £, > 0.34 the sign of D, is indeterminate

= <
Bl Po=03 =0.33 unless the optimal values are obtained.

It can be observed that the proposition 9 is sensitive to the parameter values, in
particular to the depreciation rate ¢ considering the fact that some authors employ the
value higher than 0.05 for 6. For oand p the valid range may cover the values
reported in the existing literature.'"® Though the base case parameter values are quite
plausible, the proposition 9 seems quite sensitive to the parameter values. For the
parameter values outside the valid range shown in Table 1 the local stability
conditions depends not only on the parameter values but also on the optimal
steady-state values, and the local stability conditions may vary among optimal

steady-states if there are more than one optimal steady-state.

6. Conclusion

In this chapter the analytic model is developed based on RCK growth model with

introducing continuous monitoring-feedback in the households’ price expectation

'8 See Footnote 6 of this chapter. Ostry and Reinhart (1992) report empirical estimates of o and p for each of
African, Asian and Latin American countries, in which the African average is 2.26 for o and 0.064 for p based
on the data of Morocco, Egypt, Ghana and Cote d’Ivoire between 1968 and mid-1980’s.
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formation as well as two-stage optimisation in which private optimisation and public
optimisation processes are separated. These novel features improve the applicability
of RCK growth model to quantitative policy analysis. This analytic model serves as a
platform to develop the generalised “stylised” applied model which is a simple

dynamic CGE model. The stylised applied model is explained in the next chapter.

The solution of the first-stage optimisation, i.e. the private optimisation, shows that if
water is not scarce and the government can freely set the rate of water charge then the
government can induce any desirable level of social welfare as the optimal

steady-state by setting appropriate constant rate of water charge (Proposition 4).

The solution of the second-stage optimisation, i.e. the public optimisation, provides

several implications.

Firstly, the long-run optimal trajectories exist only if the optimal level of public

capital stock G satisfies £ (G*)21+§, which rules out the possibility to keep

eternally non-declining per capita consumption along the long-run optimal
trajectories with population growth (Proposition 6). Note that the elasticity of water
product with respect to public capital &5 can be interpreted as a kind of water scarcity
indicator in the sense that water abundant economy could easily have high &;. This

result illuminates the importance of water scarcity issues in sustainable development.

Secondly, the optimal steady-state(s) exist if and only if population is constant and the

optimal level of public capital stock G’ satisfies e:(G*)=1 +§ (Proposition 7).

Thirdly, the local stability properties of the optimal steady state(s) depend on the

parameter values (Proposition 8).

Lastly, with the base case parameter values the optimal steady state(s) exhibit saddle
path stability associated with one unstable and two stable eigenvalues, under it is
possible to realise the optimal steady-state(s) by choosing proper initial rate of water

charge (Proposition 9).
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These analytic results, mainly focusing on the neighbourhood of the optimal
steady-state with constant population, are apparently of little relevance to
underdeveloped economies as standalone but they provide useful benchmarks with

which the results of more generalised model are evaluated.
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Mathematical Appendices

Appendix A1 Proof of Proposition 1

Recall the “clairvoyant” consumption function at period z.

()= n(t)[m(t) L[ w(s)ejfv{r(r)v}drds} , (AL1)

s -1
where ﬂ(z)z[bl{p(z)}bz [ p(s)ye" {b“_bSr(T)}des} ,

in which b, =g 0(1-p) ) 50, b, =122 50, = (@=N=0)
o o

b4sv—£, and bsso-_l >0.
O O

If we substitute true trajectories of exogenous variables w, r, and p with the
households’ expectation about them, which we assume constant at the current value at

period ¢, we obtain

_[:O W(t)e_jts {’(f)‘V}deS _ W(t)jwe*{r(t)fv}(rt)ds _ W(Z) w%{ 1 e{r(t%v}(st)}ds

—%riti—v?

__ W(Z) [ef{r(t)—v}(sft)]w _ W(t) |:1 — lim e{’(f)‘”}s} (Al1.2)

%riti—v}t CT ) -vIL o
b, {P(t)}szw

t

{p(t)}bg [ {ba—bsr(t)}dz “ds = b, { ()}b2+b3 J-ooe{bwsr(t)}(s,,) Js

t

b AP T sl ] _ Buip()) ba—bsr(1)}s
_—b4 ~ber() [e 4 ][ r() [ lim e } (A1.3)

§—>0

By substituting (A1.2) and (A1.3) into (A1.1), the consumption function becomes

c(t)=

byr(1) - b, J[ e )+{ W(t)v}{1 im e rvis ﬂ (A1.4)

b {p(e)}' ™ | = lim e~lbsr(01-bils () s
§—>0
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In order to converge two limits towards zero in (A1.4) we need the following two

conditions.
rt)-v>0 = r(t)>v,and (A1.5)
bor(l) by >0 = ri)>24-YT =P (A1.6)

First we check the relativity between two critical values as follows.

L vo—p _Vio-1)-(vo-p)_p-v_, (A17)
o-1 o-1 o-1

Here recall that we previously assume that both the numerator and the denominator of

the far right hand side are positive. Now we can examine the following 3 cases.

Casel:r>v

Since (A1.5) and (A1.6) are satisfied, the above two limits converge to zero, and we

obtain

c(t)zw{m(m 1) } (A18)

Case 2: ba/bs<r<v

If 7(#) = v, c(t) becomes positive infinity from (Al.1). Otherwise the limit
corresponding to (A1.5) diverges to positive infinity and that of (A1.6) converges to

zero. As aresult, c(f) becomes negative infinity.

Case 3: r < by/bs

If (t) = ba/bs, c(f) becomes positive infinity from (Al.1). Otherwise, we need to

modify (A1.4) into the following form to examine this case.

o (bgr—by)m w1 (A1.9)
blpl—(p {] _ lim e—(b5r—b4)s } blpl—(p (I’ _ V) §0 1 bsr—by )s

§—>0

ol
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Further, the far right limiting term is modified as

§—>0 §—>0

. 1
1— e—(r—v)s e(b5r—b4 )S _ e(bsr—b4 )s—(r—v)s 0- SIEEJ exp{o_ (p - F)S}
lim {1—} = lim{ }

_ o lbsrba)s pbsr=ba)s 4 - 0-1

= lim exp{é(p - r)s}. (A1.10)

§—>00

Since » < v we have the inequality p—r > p—-v >0.

Hence the far right hand side of (A1.10) diverges to positive infinity. Since the first
term of (A1.9) converges to zero and the second term diverges to positive infinity, c(7)

diverges to positive infinity.

In sum, we need the condition » > v to have sensible consumption decision. When this

condition is satisfied, the optimal consumption level is determined by (A1.8).

Q.E.D.
Appendix A2  Proof of Lemma 1
Recall
k(£)— b,§* —b3& +by _ Q(¢) A2.1
#1(6)= o(Bx b8 o(fy —by&) (A2
B
fOI' O<§< 5ﬂfvﬂQl'§Q Egmax’

B B
where b, = (5+v)ﬁQKQ—1 >0, b,=(5+Vv)(d+ p)ﬂQKQfl >0,

Po
by =(6 +Vv)Bx +(5+P)(1_ﬂg)>0’ and by, EﬂK(l_ﬂQ)ﬂQ@ >0.

Note that the denominator of the right hand side of (A2.1) is always positive for the

given range. Since the numerator is a quadratic function of & with positive intercept
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and the denominator converge to positive infinitesimal, we have lim ¢"(£)=oo.
-0+

Now we prove  lim  ¢*(&)=—w as follows.
S—Cmax ~

First, rewrite (A2.1) as follows.

(6+v)S+p)e e {6+ pNI=Bo)+ (6Bl b,

6= o(Bré—(6+v)z7¢?) o(fy —b1&)
G4 pE )8 = pi} -G+ PN Bo) = (p=vIBs ke Bill=Po)
o(fré - (6 +v)z8?) o(Bx —bné)
_Pxl=Bo)e {6+ pPN1-Bo)-(p=VIBx}E 5+p A22)
O'(:BK —b11§)§ o

Po
where z = Boi-ho -
Let D(&) denote the numerator of the left term of (A2.2). The limit of D(&) as £to & max

is as follows.

lim D(§)=ﬂK(l—ﬂQ)z—{(5+p)(1—ﬂg)—(ﬂ—v)ﬁf<}5ﬁfzv

max

_(6+v)B (1= By )18 + PN = Bp)= (P~ V)P 1By 2

o+v

(p=v)Bo —VBxz+(p-V)Bz (p-v)By + By —1)Bkz
B o+v - o+v

_ = (p=Vv)Bx B,z
- o+v <0

Since the corresponding denominator is positive infinitesimal, we have proven
lim ¢*(&)=—oo.

&—>&max — ¢ (5)

Due to the fact that the denominator of (A2.1) is positive and the sign of limit towards

upper bound is negative, it is necessary that £X &pyax) < 0. Since £X0) = b4 > 0, there

exists a unique & such that X &)=0. & isthe smaller root of the equation 2= 0,

_ b= B _
ie. & _ i3 =Nbis —4bpbis | B IBQ%. It is easy to see & < &

2b,, CS+p

max *
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> <
Hence, 2(£) = 0, ifandonlyif & = £. Because the denominator is positive,
< >
> . : < _ B Bo
we have proven that ¢*(¢) = 0, ifandonlyif ¢ = =K pB 14 .
< > S+p

Moreover, we have shown lim ¢°(£)=c and lim ¢*(£)=—o.
&0+ S Cmax ~

O.E.D.

Appendix A3 Derivation of 4 matrix

Each element of the matrix 4 is derived as follows. Note that the derivation often

utilises the fact that §¢ = ¢ = ¢* = 0, in which the overline denotes the steady-state

value.
0G¢° 0 _OFV
1) ——— =—(pF" -6G = -0=
) G |x =x¢ aG(p )x=xe P7oG |x=x¢
-
_el6r@)
G
L — 5+ p F"(G) & . :
By substituting &, (G)= 5 and = =3 into the above expression, we
p
G
obtain 292" =p.
x=x°
oGS d — G
2 — = — FW— :FW = —,
Q) S| o =50) = F" ()=
G
3) % QZGA(FW—éG)‘ , =o0.
ok 1x=x° 5k xX=x




University of York, S. Kojima 36

_ 500

8p¢2p
4) =2
@ x¢ P oG

oG

x°

ogy
oG

x‘ G

xe

o | F"l1=so)5+ pl+ Ropli-ec)o+ p-e69} 5
(F" + Kot 2

_i{FW{(l—eG)mwze¢;{<1—sG>a+p—gG¢G}}

- ¢kaH2+H %
x¢ oG’ oG

oG (F" + g, x°
ok ok
& ’K
where H, =g, —0¢, —Wf—?pk and
F" +K¢,

(FW + 1%¢j; Xgpk — o€, )—(1 + gk’]§ jk¢£

(FW + K¢} )H1

=0, we have
xe

k
Since [¢k (ZIGZ +H, %J

FP{(1=2)5+ py+ R {1 -6 )5+ p— 4% |

x° ag{ (FW +I€¢§)Hl }

xe

N le)D %[FW{(I—SG)5+/)}+I€¢§ {(1_56)5+p_gG¢G}1
r F1

xe

CFi-g b o)+ Ky l1-56)o + p-506°} & {(FW+1%¢")H11

(F" &4 )0, o

xe

_ ! O r{1-6)5+ p)- Kot e (6 + 6%)-5- p)

(F" + k4 ), 0 -

xe
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e

l:{(l—EG)5+p}dFW s %6 —1%¢}’;{(5+¢G)‘ig("+gc 0¢° H

~ dG dG dG oG ) |x
(F” + K¢ )p,
G

L {‘5@“@;)"& K5 }

(F" + K4 )p, dG |x oG |x

N I Pk |94,
where Dlzgpp—agp— FW+I?¢7]‘ 6p °

P

_L(“_Pj(_ﬁj+2d2FW
G G\ ¢ 5) 8 dG?

G w - w - W
99"\ _OfpE 5| _ PG _pw _pfz (6, -1)=2
oG |x¢ 0G| G x¢ G? dG x° G G
Hence,
2 W _
(FW+K¢;)4§£5+”J——" F }-1@5;56’)
ppy _5 G\ & dG* |6
0G |x¢ (F" + k4! )p,

Let’s evaluate ¢ and D;.

7 = % 2%% =b 5% where
P ap k¢ 9& dplxt P O |x
. _ i{U(ﬂk _bnég)f)( e
o _ 2b,¢& — by, Lk o5 *
0¢ | G(:BK _bnS?)E X O_(:BK _bllg)é?
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_ 2b,,¢ —byy

_0__(5+P){Pﬂf< +(5+p)ﬂL}=_b%,inwhich

G(ﬂK _bné?)f_ ) popyé g

fo_ Lo
by =(5+v)Byhe1 >0, by, =(5+v)S+ p)Byhet >0,

By Po
5+ 5 Bol-ko > and

by =(5+v)By +(5+ p)l-fy)>0, & =

(94 P)pbs +G+ B} _

1o = poPy
Hence Z; =_%,
% — i[bi{(zblz‘f _b13)_¢k0'(ﬁ1< _Zbuf)H
6}7 x°¢ ap ) O_(IBK _bllé:) x¢

xe

_ b { 26,E - by, }+ by ot d. {(2b125—b13)—¢"a(/31<—2%5)}
ﬁz G(ﬂK _bné?) p op dé& O'(ﬂK _bnég)

e

X

_ bebye n bezég i{(2b12§—bl3)—¢ka(ﬂ,{ _2[3115)}
p’ p’ dé O'(ﬂK_bné:)

b bE { 2, P -2b,E 09" }

> 5 ol —buE) (g —b,E) oc Ix°
_ bebig {2 S, 26(5 + p)bg } _bebie|, O, 200k Py _

P’ P poby¢ P’ P (l—ﬂQ ){PﬂK +(5+P)ﬁL}
Thus,

K 26,
Dy =¢,, -o¢, - %} 2_2"‘ Pbo
pF" —beh oK P <l_ﬁQ ){PﬁK +(5+ P)ﬂL}
sG '
=&,, —0¢, +b;| 1- bsblsl?j , in which
26,

b, = 2_£+ BBy .

p (1= By KBy +(5+p)B. )

As aresult,

38
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39

oS _D £(5+ p) 5 d*F"
oG |x° D, |6G-bh K = dG* |¢
opdy _ _0p? Pl
(3) szxe_wjx:xe-’-pﬁx:xe_o-kp op |x=x°¢"
5 ops

0+ K{(1—gc)5+p—gG¢G}ﬁ+K¢§i{(1—gc)5+p—gG¢G} )
ogy | _ ap op X
» | ko

fW{(l—EG>5+p}+Ea;{<1—5c>5+p-565G}i{(FW+k¢k>ﬂ14

xe

(P + Rt f Hy? p
. (F" + K" e —aEk)—(1+§kﬁ)I?¢T; 07"
! op xe_ (FW+I?¢7;‘)DI op

G
0-2.K¢,) 9

T, (5pk—a§k)_(1+§]g;) Y
(FW +Kg) )D1 D, (FW +K¢p, )Dl
Koy 6+p)p | (64 —07) K -

= — — — - - _ _ ¢p +k A e ¢p
(F” + &g )b, b, (F"+Ks!)p, ok |x

_ _ — k
_ (gpk _ng) K —k _O+p ];‘Mp —k
- [ (e — ¢p -t ~ | e ¢p'
Dl (F +K¢p )Dl p ok X
bu-on) & :
_ by | (& —08) K {_b6b16_5+p+]€6¢p } .
A R S 73 B A
k
Here we need to derive a¢f’
ok |x°

a¢§
ok

o {b_ﬁ {(2blz§—b13)—¢"0(ﬂ1< —2b11§)H

x¢ ok

p

xe

G(ﬂK _b11§)
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zb_éa_éj 0 {(Zblzég b13) ¢k(7(ﬂ1< _2b11§)}
p Ok 06 (:BK_ 115) X
2b12(18K _b11§)+b11(2b12§_b13)_(ﬂl( 115) {¢ O'(IBK _2b11§)}+0
bohE o¢
opk (Bx ~bus)
z _ G(ﬂK _2b11§)@+0
_ bebséc 2b, P —byb; o¢
opk (ﬁK _b11§)2 (ﬂK - 115) x¢
oy, wosota]
Pk propk
Hence, 5p¢2p _ bebis %
ap |x€ D,

l\bbm S+p  2bbd(5+p) By

16/1’){([) D

EXGRT

r

o+ p

bisp O-:BK

b6b16

pp G:BK

}(l ) béifz?ﬂ |

(6) 2| 50
ok |x¢ ok |x
I G (RS R SR C
99 | _
ok |x (F" + k! )p,

F"{1-28,)5 + p}+ {(1 )0+ pP—Ef }

(F" + x5!} D

Sl ko)

]
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e

GAH(FW + 1%¢§ Xgpk - agk)—(l + gkﬁ )I&ﬁ }WJ
_ Ok

X
(F" + K35 )b,
{(FW+1?¢T;X§pk—agk)—(ugkﬁjl?ﬁj}a" 5 [( §
’ 7 55 0, "

e

X

GAH(FW +I€¢§ Xgpk —0'5,{)—(1+5k§ jl%ﬁ }¢k}

_0_n._ %k
070 (F" +K4*)p,
]aw‘
x| ok

+0

e

{(FW kgt e, 05, )-K [ s

o ok x
(F” + &g )p,
k k T oAk
in which 2. 299" 0¢ _p 0|
ok 1X=x 6§ 8kx Xx°© k § X=X
B
where b, = )
l—ﬂQ
Hence,
pdy | _0b|
ok |x¢ ok |x¢

— 2 — \!
| P P ¥ R 7 A R N
Dik bisp Pk bebisK

okg* _og" 70 [had —blh
) oG xzxe_k%x—xe_k_(?{ 1;(ﬂK 13115)514}’6:
ak¢k _ ot _ - ogk 8¢ T EL
®) = v = F gy x—xe K BF G lx = xe KB =7 |x
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o El e (St p)BY| L K
—kb6: = - b6b16:'
P pofxé p
L4k _ A4k
O S MR S I Py 2
_ 7 0¢* o0& _ o, £ 0" _
= Ea]gx=xe_kb8f¥x=xe__b8b‘6'

As a result, the Jacobian matrix evaluated at the steady state is given as

All A12 0 5(_;
p
0 A32 A33

4 Ei _/)(5+p)__ﬁd2FW
' D, | 6G - bbb K dG?

)

b.b 26.5(5 + p)? G )
A = ;)ml:(gpk_(fgk)_{b7+ 8 ( +,0) IBL+§+'D}(1— %G j ]’

b16p20-ﬂ[( bebyg bsblal?

beby B 26,5(5 + p ) G )
Ay, = 8716 (gpk _ng)_ b, + =8 ( '2*‘,0) AL [1_ 5G_j ,
bigp 0P bb K

Ay, =—beby é<0, Ayy =—bgb,; <0, 1n which
p

— N\l
_ _ oG
D, Egpp_o_gp+bl7[1_b6b16gj :

Moreover, it is necessary to evaluate £ , —o¢, and &, —og, for analysing the local

stability condition. They are evaluated as follows.

Recall Eq. (3.9) with &= p*k%.
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A 1))
bloz(a_l)"%>0,and b, =(5+V)Byp1>0.

From this expression, the price elasticity of consumption &, is evaluated as

™
I1l

~
o))

2|
Q)l"@

:¢_1+b6§{259b11§‘b9(1_ﬂg)_blob11}_be(ﬂK —21)115), (A3.1)

(by& — by W& ~(1- B, )} By —byé

and the elasticity of consumption with respect to private capital stock & is

Y SO 8 Y ST R
C

ok (b9§_b10){b11§_(1_ﬂg)} P =bis

Further, we can derive

oc os

p P g p

=L —¢ —1+b=——L  and A3.3

“w =" . g, —1+ P (A3.3)
oc, & O¢

e, =—L " —¢g +bh, 2 —L. (A3.4)

pk ak Cp k 8gp aéj

The far right partial derivative term is evaluated at

aizb _ byby _ (l_ﬂQ)bll n Biby ) (A3.5)
05 | (bee-byo) PuE-(-Bo)  (Bx —byé)

From equations (A3.1) - (A3.4) we obtain

ew=0tc _p,  Bull-0-po-1}-Bolo-1) (A3.6)

Epp —OEp lBQ ﬂQ (gpp _O-‘gp)

_ B
From (A3.1), (A3.3) and (A3.5) with Z = 5[1—](,0 Boi-to

g O¢
£,y — 08, =8, —l+bs =——= , 0%,
g, 0§ |x=x
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=(l-o)¢, -1

+(5+P)ﬁQ2{i_(a—l){(a—l)&—p}_ 5(1- By )Bx }
£,(1-B,) LP? pro’ PPy + (5 +p)B. Y

inwhich & =g -1+

(5"':0),3Q {l_ P(l_ﬂg) }

P(l_ﬂg) o pﬁK+(5+p)ﬁL

£, — 0%, 1s casily obtained by putting the above into Eq. (A3.6) as

) Bl do )yl 1)

pp p
0 ﬂQ

Note that &£,, — oz, and £, — o, are determined by parameters only.

Appendix A4 Proof of Proposition 9

Let g(7) denote the characteristic polynomial of 4. We have
g(r)=—r’ +trace Axr? + (4, 4y — Ay Ayy — A), A3y Jr + det 4, (A4.1)
where trace A= A4, + 4,, + A4;; and

det4 = All (A22 A33 - A23 A32 )_ A12A21A33 .
The eigenvalues of 4 are the roots of the characteristic equation g(») = 0.
First, we have g(0) = det 4. det A4 is evaluated as

5G
det 4= P(Azz Ayy — Ay Ay, )_ ? Ay 455

}b8b16
G

_bgbip(5+ p) bebisK ) 5G Cbb G d*F”
D, beb K — G | \ beh K — G 1D dG?

_ bbbl (5+pY,__ &G ‘1+§ pl6+p)  _d*F”

G
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d*F"
dG*

- b {pw +p)-5C

1

)

2 W
Because of diminishing marginal water product ( — <0), we have
G
detdA 7 0if andonlyif D, 7 0.
G )
Recall D, = £,, — 0, + by, (1 o _] . Baseline parameter values result in b7 =
6016

1.343 > 0. With the assumption that 6G < bsh, K or equivalently K >0.793G with

baseline parameter values, which seems universally to hold in the real world, we have

the inequality D, >&,, —o¢, +b;; =0.103>0. As aresult baseline parameter values

establish det 4 > 0. Similarly, the same assumption with the same parameter values

establish trace A < 0 as proven below.

o) 2
bsbi (gpk—o'gk)— by + b85(5jp) B +5+p
bigp ofk bebyg

€, —OE, + b

holds as follows.

First, 45, <

bl61020-ﬁ[< bebys b6b161?

— -l
_ _ oG
E -0 +b,|1-——=
rp p 17( bsmeJ

2 — -
b6b16[(5pk —ng)—{lh + 2556+ p) f + o+ p}(l—&;] ]

Axn =

_ , ,
bebis [(Epk — 08 (l - §G1?j —{b7 + bS5+ p)° By N o+ pH

blépzo-ﬂK bebyg
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o) 2
_bﬁblé{b7+ b85(5+p) ﬂL +5+p}

bisp 0Py bebyg
b17

<

, of which the far right inequality holds

< © -oF < (5, -05, ) < £ —o08, <
because 0< &, -oz,+by, €,y —OE, N +by; bi; and &, -og;

oG

6716

(Epk —0g, )77 <0 in which p=1- — €(0,1) <1 by the assumption.

Hence, trace 4 = A1+ Ayt Az

2
<Ay - Db b, +2b85(5jp) Pr,0+P| 4 4= 0356<0.
bisp 0Bk bsbig

Due to the fact that g(r) = 0 is a cubic function with negative parameter of cubic term
with g(0) = det A4 > 0, there must be at least one positive real root. Let « denote this

positive real root (> 0). We can rewrite g(r) as

g(r)z—(r—a)(rz +k1r+k2)=—r3 +(a—k ) +(ak, =k, Jr + ok, . (A4.2)

—ky £k — 4k,

It is easy to see that the other two eigenvalues are given as r = >

By comparing Eq. (A4.1) with Eq. (A4.2), we have

det A
a

ki=a—-traceA>0 and k, = >0.
As a result, there are two eigenvalues which are either negative real numbers or two
complex conjugate numbers with negative real parts, in addition to the positive real

eigenvalue a.

Recall that the linearised system around the optimal steady state is in general unstable
unless as many initial conditions as the number of unstable eigenvalues are freely
chosen (Gandolfo 1997; Theorem 18.3). Because the system has one control variable,

i.e. the rate of water charge p(f), while there is only one unstable eigenvalues, it is
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possible to stabilise the optimal trajectories around the optimal steady-state by

choosing proper initial rate of water charge p(0).

Q.E.D.

Appendix A5 List of Parameters
v: rate of population growth
o: elasticity of marginal felicity
¢ : weight of market good consumption in satisfaction production
0: depreciation rate
p . rate of pure time preference
Pk . factor share of private capital in market commodity production
Po : factor share of water in market commodity production
. : factor share of labour in market commodity production

by E(P_(p(l—(/’)_(l_wa b, = 1;(/) , by = (U_I§I_¢)’ b, EV—ga bs EGT_I’

b El_ﬁ% , bs El—ﬂz > bg 51;82 , b955+v—5TT’0,

0 0 0

by =

Bo
(0 =1D)Bk Boi-5o Po_ Po_
; = s by =(3+V)Boho-t, by, =(8+V)S + p)foho-t,

B
by =(5+v)By +(5+ p)l=Bo)s by = B (1= By )Boi-ho »

ﬁQ_l Bk ﬁQ
bis=¢? (=) (5 +p) 5 B b Bohllp—v)Bx +(+p)BL}

(0 + ppBy +(0+p)B.} ,and b, =2 _£+ 200k Po .

Pop el (1 - ﬂQ){,O,BK +(6+p)BL}

b =



