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1. Introduction 

The water crisis is a highly complex problem. It is characterised by its multi- 

dimensionality encompassing a wide variety of problems such as water shortage, 

water pollution, public health and food security all of which have social, ecological, 

cultural, and economic dimensions (Saleth 2002).  As the success of any model 

depends upon a balance between realism and analytical tractability (Intriligator 1983), 

it is no wonder that building a useful model for this highly complex problem is a 

challenging task.  On the other hand, modelling is a potentially powerful and 

promising approach for this issue exactly because of this complexity. 

The principal objective of my PhD research is to conduct quantitative policy analysis 

with respect to water problems in water-stressed developing countries in order to have 

policy prescription for sustainable development. 

In this paper a stylised Ramsey-Cass-Koopmans (RCK) growth model is developed as 

the analytic model of the quantitative policy analysis.  On the surface, the 

specification of this analytic model does not seem to be adequate for capturing some 

key stylised facts of water-stressed underdeveloped countries, such as vulnerability of 

rain-fed agriculture, high unemployment rate, and so on.  The fact is that the analytic 

model stands as the simplified version of more general model reflecting these stylised 

facts.  The major roles of the analytic model are (i) to provide a model platform on 

which more general model is constructed, and (ii) to clarify policy implications of 

these stylised facts on sustainable development by investigating the case without 

them. 
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The structure of this paper is as follows.  Section 2 explains general features of the 

analytic model, in particular the specification of two-stage dynamic optimisation 

without perfect foresight assumption. Section 3 shows the results of the first-stage 

optimisation in which households and private firms optimise their objective functions. 

Section 4 shows the results of the second-stage optimisation by the government.  

Section 5 presents the qualitative analysis of the predicted optimal time paths.  Section 

6 provides conclusion of this paper. 

2. Outline of the Analytic Model 

The analytic RCK growth model is designed so as to be compatible with the more 

generalised multi-sector growth model incorporating the following stylised facts of 

the water scarce developing economies.   

− Irrigation shares vast majority of total water use, often reaching 80 to 90%. 

− Production risks of rain-fed agriculture are one of the main causes of rural 

poverty and consequently of rural-urban migration. 

− An urban unemployment rate remains high with considerable rural-urban 

migration in spite of priority public investments in urban modern sectors. 

− A lack of safe water access, which is rather common in the rural areas or in the 

urban squatter areas, severely undermines the social welfare through various 

pathways, via direct and indirect health risks and higher medical and water 

expenditure, or via depriving educational opportunities from children. 

The compatibility between models means that the generalised version can be obtained 

by relaxing some assumptions of the analytic model.  More specifically, both models 

have essentially the same control variables, i.e. consumption levels of the market 

good and domestic water for the household, factor inputs including water for the 

private firms, and public investment as well as the water price for the public water 

producer.  The stylised facts abovementioned are abstracted from the analytic model 

in order to have benchmark results based on which we can examine the implication of 

each stylised fact. 
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The analytic model assumes a closed economy consisting of numerous identical 

households and identical competitive firms of which output is the numeraire of the 

economy.  There exist population growth (as the growth of household size) at a 

constant rate ν and capital depreciation at a constant rate δ.  Further, it is assumed that 

a budget neutral government provides water to households and private producers and 

collects a volumetric water charge. 

The social optimisation process consists of two stages.  At the first stage, the 

households maximise their utility by choosing consumption levels and the private 

firms maximise their profits by choosing the amounts of factor inputs taking the rate 

of water charge as given.  At the second stage, the government maximises the social 

welfare by choosing the rate of water charge and by investing the collected water 

charge in public capital that is the sole factor input of water supply service.  In 

addition to the rationales mentioned in the previous chapter, this specification allows 

the government intervention to be dynamically efficient. 

Another novelty of the present model is the households’ expectation process without 

the perfect foresight assumption.  The conventional RCK growth models assume that 

the households determine the optimal consumption trajectory by deriving optimal 

conditions of instantaneous rates of change of consumption, with determining the 

optimal initial consumption.  The latter is determined based on the consumption 

function derived from the intertemporal budget constraint, with an assumption that the 

households can precisely predict the trajectories of the wage rate, the water price, and 

the interest rate.  The analytic model in this thesis attempts to liberate the households 

from this perfect foresight assumption.  In this model the households make their 

decision of consumption level based on their expectation of the future trajectories of 

those exogenous variables, but they do not believe their expectation precisely forecast 

them.  Instead, the households continuously modify their expectation based on the 

realised levels of these exogenous variables.  The realised consumption trajectory 

satisfies the second-best optimality.   At the optimal steady state the second-best 

outcomes coincide the first-best outcomes. 
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3. First-stage Optimisation 

The first-stage optimisation consists of households’ utility maximisation and firms’ 

profit maximisation taking the government policy in terms of water price as 

exogenously given. 

3.1 Household’s problem 

(1) Problem formulation 

It is assumed that households hold assets as equity shares of the private capital stock.  

Population is defined as the labour force population and each person supplies one unit 

of labour services per unit of time. 1  Households earn wage and capital income, 

purchase publicly supplied water and manufactured goods for consumption, and 

invest in private capital stock.  As a result the per capita budget constraint of the 

representative household becomes Ipqcrmw HM ++=+ , where w is the wage rate, 

r is the real rate of return to equity shares, m is the household assets, cM is per capita 

consumption of the manufactured good, qH is per capita domestic water consumption, 

p is the rate of water charge (water price), and I is the household investment in equity 

shares. 2 

The equation of motion of per capita equity shares owned by a household is 

mIm ν−=& .3  The latter term corresponds to “dilution” due to growth of household 

size (Aghion and Howitt 1998; p.14). 

These two equations merge into 

( ) HM pqcmrwm −−−+= ν& . (1) 

                                                      
1  It means that we assume the same proportion between consumption of labour force age person and that of 

his/her dependents such as young children and elderly people throughout time horizon.  In other words, a person 
in our model consists of one labour force age person and his/her dependents.  In empirical analysis this 
assumption is important. 

2  All variables are time variant, i.e. w(t), r(t), etc., but time is omitted for notational simplicity. 
3  Superimposed dot means time derivatives.  Note that the equity shares do not depreciate though the 

corresponding private capital does. 
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It is assumed that households’ utility at time t is determined by the discounted sum of 

felicities for certain length of period T.4  The felicity function is assumed to be CIES 

(constant intertemporal elasticity of substitution) type.5 

U(t) = ( ) ( )( )dsscue
Tt

t
s∫

+ −− νρ , ( )( ) ( ){ }
σ

σ

−
≡

−

1

1tctcu , 

where c(t): the consumption level of flow of satisfaction produced by the household 

itself at time t, T: length of planning period, ρ: the rate of pure time preference, and 

σ : the elasticity of marginal felicity with respect to consumption.6 

The underlying assumption is that an immortal household consists of continuously 

distributed age groups and that the terminal time of planning horizon continuously 

shifts forward.  This is a straightforward extension of the utility maximisation 

problem of an individual.  We have little idea about the length T that might be formed 

by economic and social circumstances as well as education in the real world.7  For the 

sake of analytical simplicity T is assumed to be infinite, which may reduce the 

accuracy of households expectation but not significantly with time discounting.  

When we employ a finite T, say 20 years, we have to specify the terminal condition 

for the household assets as well.  Both the choice of T and that of the terminal 

condition are of quite arbitrary nature. 

It is assumed that households produce a flow of satisfaction by consuming the 

manufacturing good and water. 

( ) ϕϕ −≡ 1, HMHM qcqcc , 0 < ϕ < 1, (2) 

where ϕ is a weight of manufacturing good in satisfaction production. 

                                                      
4  The common notion of “instantaneous utility” is deliberately avoided.  In my thesis felicity is analogous to the 

notion of ophelimity in the works of Pareto.  Pareto defined ophelimity as satisfaction derived from economic 
activities which is merely an ingredient of utility (happiness).  For further discussion of ophelimity/utility 
distinction in Pareto, see Tarascio (1969).  

5  CIES functions are functionally identical with CRRA (constant relative risk aversion) functions.  This 
specification is advantageous since later we will introduce risks in our generalised models. 

6  In this thesis ρ - ν > 0 and σ > 1 are assumed.  Arrow et al. (1996) report that majority of studies use values in 
the range of 1 to 2 for σ. 

7  Perrings argues that poverty may drive up poor farmers extremely myopic such that “all that matters is 
consumption today” (Perrings 1989; p.20).  Becker and Mulligan (1997)’s argument on time preference 
formation is applicable to this time horizon determination as well. 
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Each household maximises its utility subject to budget constraint taking the water 

price as given.  Hence the representative household’s optimisation problem at time t is 

( ) ( ) ( ) ( )( )( )
ds

sqscc
etUMax HM

t
s

HqMc σ

σ
νρ

−
≡

−
∞ −−∫ 1

, 1

,
,   subject to 

( ) HM pqcmrwm −−−+= ν& , and 

the initial assets m(t) is historically determined at time t. 

(2) Optimal growth rate of consumption 

The current value Hamiltonian of this problem is  

( )( )
( ){ }HM

HM pqcmrw
qcc

H −−−++
−

=
−

νλ
σ

σ

1
,~ 1

, 

where λ is the Lagrange multiplier associated with household assets m. 

Assuming an interior solution, the necessary and sufficient conditions are as follows.8 

0
~

=
∂
∂

Mc
H  

Mc
c σ

ϕλ
−

=⇒
1

 (3a) 

0
~

=
∂
∂

Hq
H  ( )

Hq
cp

σ
ϕλ

−
−=⇒

1
1  (3b) 

( )
m
H

∂
∂

−=−−
~

λνρλ&  ( )ρ
λ
λ −−=⇒ r
&  (3c) 

In addition, the transversality condition is ( )( ) ( ) ( )[ ] 0ˆˆlim =⋅−−−

∞→
smse ts

s
λνρ .9 

From (2), (3a) and (3b) we derive 

cpqH
ϕ

ϕ

ϕ
ϕ −

−









−
=

1
, and cpcM

ϕ
ϕ

ϕ
ϕ −

−









−
= 1

1

1
. (4) 

                                                      
8  Since each of the objective function and the constraint is a concave function associated with a negative 

semidefinite Hessian matrix, the Mangasarian Sufficiency Theorem (Mangasarian 1966) can be applied. 
9  “ ^ ” denotes the first stage solution. 
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By putting (4) into (3b) we have ( ) ( ) σϕϕϕ ϕϕλ −−−−−= cp 111 .  By taking time 

derivative of the both sides with logarithmic transformation, we obtain 

( )
c
c

p
p &&&

σϕ
λ
λ −−−= 1 .  From this equation and Eq. (3c) we derive the optimal growth 

rate of consumption as 

( ) ( )






 −−−=

p
pr

c
c && ϕρ

σ
11 . (5) 

The difference between this result and that of the standard RCK model lies in the far 

right term.  There exists some negative effect of the water price rise on the 

consumption growth.  The larger the weight of water consumption in satisfaction 

production (1−ϕ) is, the severer this effect is.  It might be plausible that the developing 

economies would be more sensitive to this negative impact of water price rise on 

consumption growth, due to higher share of water expenditure among the total 

household expenditure. 

(3) Optimal consumption level 

In order to determine the optimal consumption level, we need to construct the 

consumption function based on the intertemporal budget constraint.  With the 

optimality conditions (4), the equation of motion of the household’s assets becomes 

( ) cpbmrwm ϕν −−−+= 1
1& , where ( ) ( ) 01 1

1 >−≡ −−− ϕϕ ϕϕb . 

The solution of this differential equation for the period between t and t + T is 

( ) ( ){ } ( ) ( ) ( ){ } ( )[ ] ( ){ }∫
+ ∫ −−−∫ + −− −+=+

Tt

t

s
t drTt

t dr dsescspbswtmeTtm τντϕτντ 1
1 . 

When we take the limit as T approaches infinity, the left hand side becomes zero from 

the transversality condition.  Thus, the intertemporal budget constraint becomes 

( ){ } ( ) ( ){ } ( ) ( ) ( ){ }∫∫
∞ ∫ −−∞ ∫ −−− +=
t

s
t dr

t

s
t dr dseswtmdsescspb τνττντϕ1

1 . 

The left hand side is the present value of the household’s total spending, while the 

right hand side is wealth defined as the sum of the disposable assets and the present 
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value of wage income.  The following expression of consumption is obtained by 

solving Eq. (5). 

( ) ( ) ( )
( )

( ){ } 



 −









= ∫
s

t

b

dr
sp
tptcsc τρτ

σ
1exp

2
, where 01

2 >
−

≡
σ

ϕb . 

From these two equations we derive the following consumption function of the 

“clairvoyant” household who can predict the future trajectories of w, r, and p 

perfectly. 

( ) ( ) ( ) ( ) ( ){ }




 += ∫

∞ ∫ −−

t

s
t dr dseswtmttc τντη , where 

( ) ( ){ } ( ){ } ( ){ }
1

5432
1

−
∫ −∞





≡ ∫ dsesptpbt

s
t drbb

t
bb ττη , 

in which ( )( ) 011
3 >−−≡

σ
ϕσb  and 

σ
ρν −≡4b  and 01

5 >−≡
σ

σb . 

The term η(t) is the propensity to consume out of wealth at period t.  It is noted that the 

clairvoyant households need to use the consumption function only once when they 

choose the initial consumption at t = 0, then they just need to change the level of 

consumption based on the optimal consumption growth rate expressed as Eq. (5) in 

order to achieve the first-best optimality. 

Now let’s relax the perfect foresight assumption.  Instead, it is assumed that the 

households’ expectation about the trajectories of exogenous variables is that they are 

constant at their current values.10  With this assumption the following proposition is 

derived. 

Proposition 1:  Optimal consumption level 

If r(t) > ν is satisfied, the optimal consumption is given as 

                                                      
10  It is also possible to incorporate past information in the expectation formation process.  For instance, the 

expected trajectory might grow at constant rate estimated based on the past growth rates.  I feel, however, that 
this kind of sophistication is of ad-hoc nature anyway and its rewards might not be enough to compensate its 
costs. 
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( ) ( ){ }
( ){ }

( ) ( )
( ) 








−
+

−
=

− νϕ tr
twtm

tpb
btrb

tc 1
1

45ˆ . 

Otherwise ( )tĉ diverges towards either negative or positive infinity. 

Proof :  See Appendix A1. 

In the following analysis, r > ν  is always assumed.  Now ( )tĉ is determined solely by 

the contemporaneous values of exogenous variables.  Though the trajectory of ( )tĉ  is 

different from that of the clairvoyant households’ optimal unless the economy is at the 

steady-state, it is the optimal trajectory of the household consumption given the 

expectation formation process. 

3.2 Firm’s problem 

We assume that the representative firm’s production technology is described as the 

following Cobb-Douglas production function with constant return to scale. 

( ) LQ
M

K
M LQKLQKFY βββ== ,,  

where Y: output, K: private capital stock, and QM: water input, L: labour input, and 

βK, βQ, and βL: factor shares of private capital, water and labour with  βK, βQ, βL ∈ 

(0,1) and βK + βQ + βL = 1. 

The constant return to scale assumption enables us to express the above production 

technology in the following intensive form. 

( ) Q
M

K
M qkqkfy ββ== , , 

where y: per worker output, k: per worker private capital stock, and qM: per worker 

water input. 

The firm’s per worker profit is 

( ) wpqkry M −−+−= δπ , (6) 



 University of York,  S. Kojima  10 
  

where π is per worker profit and p is the water price.11 

The representative firm maximises per worker profit by setting the partial derivatives 

of π with respect to k and qM at zero, taking r and p as exogenously given. 

0=
∂
∂

k
π   ( )kryK δβ +=⇒ , and  0=

∂
∂

Mq
π  MQ pqy =⇒ β  (7) 

From the per worker production function and the above optimal conditions we can 

express y and qM as a function of k and p. 

766 bbb
Q kpy −= β , and 71

1

1
1

b
QM kpq Q

Q
−

−= β
ββ ,  (8) 

where 0
16 >

−
≡

Q

Qb
β

β
 and 0

17 >
−

≡
Q

Kb
β

β . 

3.3 Market equilibrium 

The equilibrium of the labour, the capital and the good markets is achieved by a set of 

prices r* and w* such that these markets are clear.12 

The equilibrium wage rate w* clears the labour market such that per worker profit 

equals zero and total (labour force) population equals number of total workers.  Hence, 

at the equilibrium per capita values and per worker values coincide.  By putting Eq. 

(7) into the per worker profit function (6) with applying the zero optimal profit 

condition, we obtain the equilibrium wage rate as 766* bbb
QLL kpyw −== βββ . 

The equilibrium rate of return to private capital r* clears the private capital market 

such that the supply and the demand of aggregate capital coincide.  If the labour 

market clears at the same time, r* is determined such that per capita household assets 

become equal to per worker private capital stock, i.e. mk ˆˆ = . 

                                                      
11  See footnote 4.  Too compensate the depreciation of capital the rental price of capital must be r + δ  (see, e.g. 

Barro and Sala-i-Martin 1995: p.69).  
12  Since the market good is numeraire its equilibrium price is always unity. 
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Since the private firms can realise their optimal output with r*, we can express r* as a 

function of k̂  and p from Eq. (7) as 

 δββ −= −− 866 ˆ* bbb
QK kpr , where 0

18 >
−

≡
Q

Lb
β

β . 

3.4 First-stage solution 

By putting w* and r* into the optimal consumption level in the proposition 1 and 

substitute m̂  with k̂ , the optimal consumption can be expressed as follows. 

( )









−
+

−
=

−

−−

86

86

ˆ1
ˆ

ˆˆ
11

1
1

910
bb

K

L
bb

kpbpb
bkpb

kc
β

β
ϕ

,  (9) 

where 
σ

ρδνδ +−+≡9b , 
( )

0
1 1

10 >
−

≡
−

σ
ββσ β

β

Q

Q

QKb , and 

( ) 0111 >+≡ −Q

Q

Qb β
β

βνδ . 

The following equation of motion of the private capital is derived from equations (1), 

(4) and (7). 

( ) ( ) cpbkyk Q ˆˆˆ1ˆ 1
1

ϕνδβ −−+−−=& , ( )0k̂  = k0 (= m0, given). 

From the above equation of motion with the equations (8) and (9) the optimal growth 

rate of private capital becomes as follows. 

( )
( ) ( ),,ˆˆˆ

ˆˆ
ˆ
ˆ

8686

8686

11

1413
2

12 pk
kpkpb

bkpbkpb
k
k k

bbbb
K

bbbb
φ

βσ
≡

−

+−
=

&
, ( )0k̂  = k0,  (10) 

where  ( )( ) 0112 >++≡ −Q

Q

Qb β
β

βρδνδ ,  

( ) ( )( ) 0113 >−+++≡ QKb βρδβνδ , and ( ) 01 114 >−≡ − Q

Q

QQKb β
β

βββ . 
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Taking the trajectory of the water price as exogenously given, the private firms 

determine the optimal stock level of private capital based on this equation.  Let’s 

introduce 86 ˆbb kp≡ξ  and rewrite Eq. (10) as ( ) ( )ξξβσ
ξξ

ξφ
11

1413
2

12

b
bbb

K

k
−

+−
≡ . 

The condition r > ν and δξββ β
β

−= −− 11* Q

Q

QKr  determine the domain of φk(ξ) as 

max10 ξβ
νδ

β
ξ β

β
≡

+
<< − Q

Q

Q
K .13 

Within this domain, the following lemma holds. 

Lemma 1: 

The sign of growth rate of capital is determined by the following rule. 

( ) 0
<
=
>

ξφ k ,   if and only if     Q

Q

Q
K β

β
β

ρδ
β

ξξ −
+

≡
>
=
<

1 .   

Moreover, ( ) ∞=
+→

ξφ
ξ

k

0
lim ,     and   ( ) ∞−=

−→
ξφ

ξξ

k

max
lim . 

Proof : See Appendix A2. 

Now we examine the effects of the water price on the trajectory of k̂ .  Remind that 

p(t) does not affect ( )tk̂  although p(t) affects the growth rate of ( )tk̂ .  It means that we 

can freely change ξ(t)  by setting proper p(t) regardless of the level of ( )tk̂ , if there is 

no supply side constraint.  Based on this fact, we derive the following two 

propositions from the lemma 1. 

Proposition 2: Operational principle of controlling water price 

If there are no supply side constraints on setting the water price such as water 

production capacity limitation, the government can achieve any desirable growth rate 

of the private capital stock through controlling the water price based on the following 

operational principle. 

                                                      
13 We exclude ξ  = 0, which requires either k or p is zero, from the domain. 
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( )
( )

0ˆ
ˆ

<
=
>

tk
tk& ,    if and only if    ( ) ( ){ } Q

L
Q

Q

tktp β
β

β
β

ξ
−

−

>
=
< ˆ

1

. 

Proof :  Since we can freely change ξ(t)  by setting proper p(t) regardless of the level 

of ( )tk̂ , the lemma 1 guarantees that we can control the growth rate of ( )tk̂  from the 

negative infinity to the positive infinity by choosing ξ (t) through setting p(t), 

regardless of the level of ( )tk̂ .  

Q.E.D. 

Proposition 3: Stability of the steady-state 

If the water price is set at constant, ( )tk̂  and ( )tĉ  converge towards the steady-state. 

Proof :  Assume that the constant water price is such that ξ(t) < ξ .  Then the lemma 1 

tells that ( )tk̂  grows at positive rate and consequently ξ(t) increases towards ξ .  And 

vice versa.   Thus the steady-state is globally stable within the domain of φk(ξ).  Since 

( )tĉ  is a function of ( )tk̂  and p(t) only, at this steady-state ( )tĉ  becomes constant.  

Q.E.D. 

Finally we derive the following proposition from Eq. (9) and the lemma 1. 

Proposition 4: Steady-state optimal consumption 

If there are no supply side constraints on setting the water price, the government can 

induce any desirable level of the optimal households’ consumption by setting 

appropriate constant water price. 

Proof :  Recall that the steady-state level of the optimal consumption is given by Eq. 

(9) as 

( ) 







+−−

−

−

=







−

+
−

= L

Q

pb
bpb

bbk
c

K

L β
β

ϕ

ϕ ξβ
βξ 1

15
11

1
1

9
1

10 1
ˆ

ˆ , where 

( ) ( ) ( ) ( ){ } 01
1

1
15 >++−+−≡

−
−

LKQK L

Q

L

K

L

Q

b βρδβνρββρδϕϕ β
β

β
β

β
β

ϕϕ . 
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Since the exponent of p is not zero but strictly negative, any positive steady-state 

optimal level of ĉ  can be induced by setting a proper constant price of water.        

Q.E.D. 

These three propositions might be of policy makers’ interest.  For instance, if the 

economy is free from the water scarcity problems and the government has discretion 

in setting the water price, the propositions 3 and 4 tell that the government can induce 

any desirable household consumption level by setting the water price based on the 

equation in the latter proposition.  Needless to say, these “desirable” results are largely 

due to the strong assumptions such as full employment or full market equilibrium 

which are rarely found in the real world, above all in the developing economies.  

Nevertheless, these propositions provide a useful benchmark based on which we can 

investigate the outcome of relaxing each assumption.  Moreover, they facilitate 

analysis of supply side problems which are particularly important in the water-scarce 

developing economies. 

4. Second-stage Optimisation 

4.1 Water production 

As in the case of private goods production, we drastically simplify the actual 

processes consisting of water production, e.g. harnessing raw water from the natural 

hydrological cycle, water purification, transmission, and so forth into the aggregate 

water production function ( )GFQ W= , where Q is an aggregate water production and 

G is an aggregate public capital stock. 

Weitzman (1970) argues that social overhead capital including sanitation facilities, 

irrigation and drainage facilities, and water supply facilities are belonging to “the β 

sector” characterised by very high capital intensity.  This might justify the above 

specification.  Note that here we use an aggregate production function because water 

constraint is manifested not in per capita term but in absolute term. 
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Another basic feature of the β sector discussed by Weitzman (1970) is substantial 

economies of scale due to indivisibility and cost lumpiness in this sector.   This is 

perfectly relevant to the case of water production, which is often associated with 

large-scale facilities such as dams, treatment plants and pipelines (Young and 

Haveman 1985).  Hence the shape of the water production function might not be 

smooth but kinked at several points as illustrated in Figure 1. 

G

Q

G40 G2G1

Q5

G3 G5

Q1

Q3

 

Figure 1   Conceptual illustration of water production function 

Here some clarification may be necessary.  In our model setting it is necessary to 

interpret this function as the relationship between public capital stock and capacity to 

produce clean water on condition that water sustainability is not endangered.  Thus 

the necessary public capital covers not only narrowly defined water supply costs but 

also wastewater management costs indispensable to maintain water sustainability.  On 

this ground our model sets aside the water quality issue.14 

When the supplied amount of water is smaller than Q1, harnessing water from 

hydrological cycle is technically easy and water related capital might be divisible.  To 

supply more than Q1 we might need to install some large-scale facility, e.g. a large 

dam, of which construction requires certain amount of capital corresponding to G2 - 

G1.  Only after the installation of this facility it is possible to increase water supply 

capacity up to Q3 by further capital accumulation (section between G2 and G3).  In 

                                                      
14  Though analytical tractability and logical coherence is maintained by this assumption, an empirical 

applicability of the model is significantly reduced.  An explicit treatment of water quality is a formidable but 
urgent issue to be tackled in the future. 
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other words, the marginal product of water with respect to G is zero between G1 and 

G2 (i.e. dFW/dG =0).  After repeating this process several times we will reach certain 

upper limit of water quantity (Q5) harnessed from natural hydrological cycle without 

violating sustainability of ecosystem.  Though it is possible to increase water supply 

capacity above this quantity by introducing water recycling, desalinisation of sea 

water, water import, and so on, it is highly likely that the marginal water product of 

these technologies be very low, as is shown in Figure 1.  Note that we assume the 

water production function is twice continuously differentiable at any point for the 

analytical purpose. 

The water balance constraint can be expressed as 

( ) ( )GFqqeN W
MH

t ≤+ν
0 , (11) 

where N0 is the initial population. 

The left hand side is an aggregate water demand, while the right hand side is the water 

supply capacity.  

4.2 Government 

It is assumed that the budget neutral government collects volumetric water charges 

from both households and firms and it spends all the collected charges for public 

capital investment (IG). 

( ) Gt
MH IeNqqp =+ ν

0 . (12) 

The assumption that the government undertakes water service is not only justifiable 

considering the natural monopolistic feature of water provision but also realistic in 

most developing countries.  In the context of closed economy assumption the 

assumption of budget neutral government is sensible.  From this assumption the 

equation of motion of the public capital becomes 

( ) GeNqqpGIG t
MH

G δδ ν −+=−= 0
& . (13) 

The aim of the government is maximising the “intra-generational” social welfare of 

the current generation by choosing water price with observing the sustainability 
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condition. Since we assume identical households, the government problem can be 

expressed as 

( ) ( )( )

dtpkceMax t

p σ

σ
νρ

−

−
∞ −−∫ 1

,ˆˆ
1

0
, subject to (14a) 

( ) ( ){ } GeNpkqpkqpG t
MH δν −+= 0,ˆˆ,ˆˆ& , G(0) = G0,  (14b) 

( )pkkk k ,ˆˆˆ φ=& , ( )0k̂  = k0, and (14c) 

( ) ( ) ( ){ } 0,ˆˆ,ˆˆ 0 ≥+− t
MH

W eNpkqpkqGF ν . (14d) 

The corresponding Lagrangian consisting of the current value Hamiltonian and the 

water balance constraint is 

( )( )

( ) ( ){ }[ ] ( )pkkGeNpkqpkqppkcL kkt
MH

GG ,ˆˆ,ˆˆ,ˆˆ
1
,ˆˆ

0

1

φµδµ
σ

ν
σ

+−++
−

=
−

 

( ) ( ) ( ){ }[ ]t
MH

W eNpkqpkqGF νΘ 0,ˆˆ,ˆˆ +−+ , 

where µG, µk and Θ are the Lagrange multipliers associated with G, k̂ and the water 

constraint, respectively. 

Assuming an interior solution, the necessary and sufficient conditions are as 

follows.15 

0=
∂

∂
p

LG  ( ) ( ) tMHG
MH

G eN
p

q
p

q
pqq

p
cc νσ Θµµ 0

ˆˆ
ˆˆˆˆ 








∂
∂

+
∂

∂
−+++

∂
∂

⇒ −  

0ˆ =
∂

∂
+

p
k

k
k φµ  (15a) 

( )
G
LG

GG
∂
∂

−=−− µνρµ&  
G

W

G

G

G
F

µ
Θνδρ

µ
µ

∂
∂

−−+=⇒
&  (15b) 

( )
k

LG
kk

ˆ∂
∂

−=−− µνρµ&  
k
cc

k
k

k
kk

ˆ
ˆˆˆ

ˆ
∂
∂

−







∂

∂
−−−=⇒ −σφφνρµ&  

( ) tMHG eN
k

q
k

q
p νΘµ 0ˆ

ˆ
ˆ

ˆ








∂

∂
+

∂

∂
−−  (15c) 

                                                      
15  This problem satisfies the Mangasarian Sufficiency Theorem (1966).  See footnote 8. 
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The Kuhn-Tucker condition for the water constraint is 

0≥Θ , ( ) 0ˆˆ 0 ≥+− t
MH

W eNqqF ν , ( ){ } 0ˆˆ 0 =+− t
MH

W eNqqF νΘ . (15d) 

Note that Θ is zero only if the water constraint is satisfied with strict inequality.  The 

transversality conditions are 

( ) ( ) ( )[ ] 0lim =⋅−−
∞→

tGte Gt
t

µνρ , and (15e) 

( ) ( ) ( )[ ] 0ˆlim =⋅−−
∞→

tkte kt
t

µνρ . (15f) 

4.3 The optimal trajectories 

It is known that each Lagrange multiplier represents the shadow price of its 

corresponding constraint.  Since G and k̂  are the same good, the ratio of their shadow 

prices in aggregate term is unity along the optimal trajectories.  Otherwise it is 

possible to achieve higher social welfare by allocating more capital good to invest in 

either capital with higher shadow price.  Hence the optimality requires µG = 

≡t

k

eN ν
µ

0

µ. 

The necessary conditions for the optimal trajectories are depending upon whether 

water supply capacity exceeds water demand (i.e.Θ = 0) or not.  These two cases are 

separately analysed. 

(1) Case 1:  Θ = 0 (Water supply capacity exceeds the demand) 

In this case the optimality condition (15b) determines the optimal value of µ 

as ( ) ( ) ( )tet ρνδµµ +−= 0 .  By putting this and Θ = 0 into another optimality condition 

(15a) we have 

( ) ( ) ( )








∂
∂

+







∂

∂
+

∂
∂

++−=
∂
∂ +−

p
K

p
q

p
q

pqqeN
p
cc

k
MH

MH
t φµ ρδσ ˆˆˆ

ˆˆ0
ˆˆ 0 , (16) 

where teNkK ν
0

ˆˆ ≡ : economy wide aggregate private capital stock. 
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By taking time derivative of the both hand sides of Eq. (16) with logarithmic 

transformation, we obtain 

( )pcc
dt
d ˆˆln σ−  

( ) ( ) ( )




















∂
∂

+







∂

∂
+

∂
∂

++−= +

p
K

p
q

p
q

pqqeN
dt
d k

MH
MH

t φµ ρδ ˆˆˆ
ˆˆ0ln 0 . (17) 

The left hand side of (17) becomes 

( ) ( ) ( )
k
k

p
pcc

dt
d

kpkpppp ˆ
ˆ

ˆˆln
&

&
σεεσεεσ −+−=− , where (18) 

 
c
p

p
c

p ˆ
ˆ

∂
∂

≡ε , 
p

p
pp c

p
p

c
ˆ

ˆ
∂

∂
≡ε , 

c
k

k
c

k ˆ
ˆ

ˆ
ˆ

∂

∂
≡ε , and 

p

p
pk c

k
k

c
ˆ
ˆ

ˆ
ˆ

∂

∂
≡ε : the elasticities of 

consumption and marginal consumption with respect to price or private capital 

stock. 

The right hand side of (17) becomes 

( ) ( ) ( )




















∂
∂

+







∂

∂
+

∂
∂

++− +

p
K

p
q

p
q

pqqeN
dt
d k

MH
MH

t φµ ρδ ˆˆˆ
ˆˆ0ln 0  

( ) ( )








∂
∂

+−−+++=
p

keNqbq
dt
d k

t
MHp

φϕερδ ν ˆˆˆ1ln 06  

( ) ( ){ } ( )
( ) k

p
t

MHp

k
p

t
MHp

keNqbq

keNqbq

φϕε

φρνδϕερδ
ν

ν

ˆˆˆ1

ˆˆˆ1

06

06

+−−+

+++−−++
=  

( )( ){ } ( )
( ) 









+−−+

+−++−−
+

p
p

keNqbq

keNqbq
k
p

t
MHp

p
k
p

t
QMHpppp

k
p

&

φϕε

εφβεεϕεϕ
ν

φν

ˆˆˆ1

ˆ1ˆˆ21

06

06  

( )
( ) 














+−−+






 ++−−+

+
k
k

keNqbq

keNqbbq

k
p

t
MHp

k
k
p

t
MHkpk

k
p

ˆ
ˆ

ˆˆˆ1

1ˆˆˆ1

06

076 &

φϕε

εφϕεε

ν

φν

, (19) 

where 
k

k
kp c

p
p
c

ˆ
ˆ

∂
∂

≡ε , 
p

k
k
p ∂

∂
≡

φφ , 
k
p

k
p

p
p

p
k
p

φ
φ

ε φ

∂
∂

≡ , and 
k
p

k
p

k
k

k

k
p

φ
φ

ε φ ˆ
ˆ∂

∂
≡ . 

From (18) and (19) we obtain the differential equation of the water price. 



 University of York,  S. Kojima  20 
  

=
p
p& ( ) ( ) ( ) ( )

( )pkB
pkpkBpkB

pk
k

p

,ˆ
,ˆ,ˆ,ˆ

,ˆ
3

21
1

φ
φ

+
≡ , where (20) 

( ) ( ) ( )








+
++

+−−++≡ k
p

t
MHp keNqbqpkB φ

ρδ
ρνδϕερδ ν ˆˆˆ1,ˆ 061 , 

( ) ( )( ) ( ){ } Hpkpkk qpkB ˆ11,ˆ2 ϕεσεεεϕ −+−−−≡  

( ) 




 ++−−+

k
p

k
k
p

t
Mkpk keNqbb φν εφσεε 1ˆˆ 076 , and 

( ) ( )( ) ( ){ } Hppppp qpkB ˆ121,ˆ3 ϕεσεϕεεϕ −+−+−−≡

k
p

p
k
p

t
M

Q
ppp keNqb φν εφ

β
σεε ˆˆ

1
1

06 −










−
+−− . 

The optimal trajectories are determined by the following system. 

( )pk
p
p p ,ˆ1φ=
& , p(0) is free, and (21a) 

( )pk
k
k k ,ˆˆ
ˆ

φ=
&

, ( )0k̂  = k0 given. (21b) 

This system does not contain the differential equation of G and the stock level of G is 

unilaterally determined by (14b). 

The transversality condition implies the following proposition. 

Proposition 5: Transient nature of the optimal path with Θ = 0 

The trajectories determined by the system (21a) and (21b) are optimal only in the 

short-run due to the fact that they cannot satisfy the transversality condition (15d). 

Proof :  By taking integral of the both hand sides of the equation of motion of public 

capital, we obtain 

( ) ( ) ( ) ( ){ } ( ) dsesqsqspeNeGtG s
MH

ttt νδδδ +−− ++= ∫ ˆˆ
000  

Putting this and ( ) ( ) ( )tet ρνδµµ +−= 0  into the transversality condition, we have 
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( ) ( ) ( )










 ++⋅ +−−

∞→ ∫ dseqqpeNeGe st
MH

ttt

t

νδδδδµ
000 ˆˆ0lim

( ) ( ) ( ) ( ) 0ˆˆlim00
000 =



 ++= +

∞→ ∫ dseqqpNG st
MHt

νδµµ . 

As the integrand is always non-negative, this condition cannot be satisfied unless µ(0) 

is zero which requires either zero consumption or zero marginal consumption with 

respect to price from (15a).  The former cannot be the socially optimal while the latter 

case seems a trivial exceptional case where water pricing does not affect water 

demand.  On this rationale the case µ(0) = 0 is precluded from the analysis.  Hence the 

trajectories determined by the system (21a) and (21b) cannot satisfy the transversality 

condition. 

Q.E.D. 

(2) Case 2: Θ > 0 (Water supply capacity equals to the demand) 

When Θ > 0 we have the following equality. 

( ) t
MH

W eNqqF ν
0ˆˆ +=  (22) 

In this case Θ  =  pµ holds, since the shadow price of relaxing water balance 

consumption means the social benefit of providing additional water of which relative 

price to the capital good is p. 

With Θ  =  pµ and Eq. (11), the necessary and sufficient conditions (15a) and (15c) are 

transformed into 

( ) 0ˆˆˆ 0 =++
∂
∂− k

p
tW keNF

p
cc φµ νσ , and (23a) 

dG
dFp

W
−+−= ρνδ

µ
µ& . (23b) 

With the familiar technique the following equation are derived from (23a). 
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( ) ( )
k
k
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K

p
p

KF

K
k
p

W

k
pk

kpkk
p

W

k
pp

ppp

k
pk

p

ˆ
ˆ

ˆ

ˆ1

ˆ

ˆ &
&&


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















+






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−−+
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

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
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

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−−=

φ

φε
σεε

φ
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σεε
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µ

φ
φ

 

k
p

W

k
p

k
p

W
G

W

KF

K
G
G

KF
F

φ

φν

φ
ε

ˆ

ˆ

ˆ +
−

+
−

&
, (24) 

where 
W

W

G F
G

dG
dF

≡ε : the elasticity of the water production. 

By substituting Eq. (22) into Eq. (14b) the following differential equation of G is 

obtained. 

( )pG
G

pF
G
G G

W
,φδ ≡−=

&
, G(0) = G0 (given). (25) 

From equations (23b), (24) and (25) the differential equation of p is derived as 

=
p
p& ( ){ } ( ){ }

( )( ) k
p

t
pppp

k
p

tw

G
GG

k
p

t
G

w

keNkeNF

keNF
k
p φεσεεφ

φερδεφρνδε
νφν

ν

ˆˆ

1ˆ1

00

0

−−+

−+−++−−
 

( )( )
( )( )

( )pGk
keNkeNF

keNkeNF
pk

k
p

t
pppp

k
p

tw

k
p

t
kkpk

k
p

tw

k
p

k
p

,,ˆ
ˆˆ

ˆ1ˆ

2

00

00
φφ

φεσεεφ

φεσεεφ

νφν

νφν

≡
−−+






 +−−+

− . (26) 

The optimal trajectories are determined by the following system of the differential 

equations. 

( ) ( )( )tptG
G
G G ,φ=
&

, G(0) = G0 (given), (27a) 

( ) ( ) ( )( )tptGtk
p
p p ,,ˆ

2φ=
& , p(0) is free, and (27b) 

( ) ( )( )tptk
k
k k ,ˆ
ˆ
ˆ

φ=
&

, ( )0k̂  = k0 given. (27c) 

The transversality condition imposes the following condition to have the long-run 

optimal paths. 
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Proposition 6: Condition to have the long-run optimal paths 

There exist the long-run optimal time paths if and only if the stock of public capital 

G(t) satisfies ( )( ) 1>tGGε  as t goes to infinity, along with the trajectories determined 

by the system (27a), (27b) and (27c). 

Proof :    The proposition 5 proves that the long-run optimal time paths must be 

determined by the system (27a), (27b) and (27c).  The condition for such time paths to 

be the long-run optimal is to satisfy the transversality condition (15d) which requires 

that the rate of change of ( ) ( ) ( )tGte t ⋅−− µνρ  is kept negative as t goes to infinity.  It 

means that along with the trajectories determined by the system (27a), (27b) and (27c) 

the following inequality has to hold as t goes to infinity. 

( ) ( ) ( ){ } ( ) ( ) 01ln <−=++−−=⋅−−
G

W
t

G
pF

G
GtGte

dt
d ε

µ
µνρµνρ

&&  

The above condition requires ( )( ) 1>tGGε  as t goes to infinity.  

Q.E.D. 

Recall the general shape of the water production function.  We may need to keep the 

stock of public capital less than a certain level such that the necessary condition in the 

proposition 6 is satisfied.  This requires non-positive growth rate of G in the long run.  

The proposition 6 rules out an infinite growth of water production capacity, which 

consequently precludes the possibility to maintain non-declining per capita 

consumption with positive population growth for the infinite time. 

5. Qualitative Analysis of the Optimal Time Paths 

The raison d’etre of the analytic model lies in its ability to investigate qualitative 

properties of the optimal trajectories such as stability of the singular point 

(steady-state) and structural stability of the system.  For such an investigation it is 

necessary to find the optimal steady state(s) of the system. 
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The proposition 5 dictates that the optimal steady-state(s) must be associated with Θ > 

0.  Hence the optimal steady-state(s) of the system must satisfy the following system 

of equations. 

0=−= δφ
G

pF W
G  (28a) 

=p
2φ

( ){ } ( ){ }
( )( )

0
ˆˆ

1ˆ1

00

0 =
−−+

+−++−−

k
p

t
pppp

k
p

tw

G
k
p

t
G

w

keNkeNF

keNF
k
p φεσεεφ

ρδεφρνδε
νφν

ν

 (28b) 

( )
( ) 0

ˆˆ

ˆˆ

8686

8686

11

1413
2

12 =
−

+−
=

bbbb
K

bbbb
k

kpkpb

bkpbkpb

βσ
φ  (28c) 

Let G*, p* and *k̂  denote the optimal values of referent variables and G , p  and k  

denote their optimal steady-state values. 

Proposition 7:  Optimal steady-state 

Along the optimal trajectories determined by the system (27a), (27b) and (27c), there 

exists at least one optimal steady-state if and only if 

(a)  The population growth rate ν is 0, and 

(b)  G* is such that ( )
δ
ρε +=1*GG . 

Proof :  It is clear from the water sustainability condition (22) that the optimal 

steady-state could exist only if ν = 0.  When this condition is satisfied, Eq. (28b) 

becomes ( )
( ) ( ){ }

0
ˆ1

1
1

=
+−−

+−
−k

p
W

pppp

G

KF
k
p φεσεε

ρδε
φ

.  Assuming that the denominator is 

non-zero, this condition is satisfied if and only if 
δ
ρε += 1G .  This equation, which 

also satisfies the transversality condition from the proposition 5, determines the 

optimal steady-state level of public capital stock G .  Subsequently Eq. (28a) 
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determines the optimal steady-state price p  as 
( )GF

Gp
W
δ

=  and finally the optimal 

steady-state stock level of private capital k  is given as ( ) L

Q
L

Q

pk β
β

β
β

ξ −
−

=
1

. 

Q.E.D. 

Recall the shape of water production function in Figure 1.  There could be more than 

one values of G satisfying the condition (b) in the proposition 7.  It means that there 

could exist more than one optimal steady-states depending on the shape of the water 

production function. 

Due to nonlinearity of the original system defined by Equations (27a), (27b) and (27c) 

it is difficult to analyse global stability or instability of the optimal steady-state.  If the 

optimal steady-state is partially stable, which is frequently observed in the optimal 

growth models, the Liapunov’s second method does not work (Gandolfo 1997).  In 

fact an application of the second method with a Euclidean distance function as a 

candidate of Liapunov function results that the time derivative of this candidate is 

neither positive nor negative definitive, which is consistent with partial stability.  

Hence we focus on analysing the local stability of the optimal steady state by 

linearisation method. 

As this system is autonomous, the following linearised system near steady state is 

certainly a uniformly good approximation to the original nonlinear system (27a) - 

(27c) around the optimal steady state (Gandolfo 1997). 

( )e

dt
d xxAx
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The following two propositions summarise the local stability of the optimal 

trajectories around the optimal steady-state(s). 

Proposition 8: Structural instability of the optimal steady-state 

Along the optimal trajectories determined by the system (27a), (27b) and (27c), their 

exist bifurcations (threshold parameter values) at which qualitative changes in the 

local stability properties of the optimal steady-state(s) occur.17 

Proof :   The local stability properties of the linearised system around the optimal 

steady-state are partially determined by the signs of the determinant and the trace of 

the matrix A (Gandolfo 1997).  To prove the existence of bifurcation it is enough to 

show that the sign of determinant of the matrix A, denoted as det A, depends on 

                                                      
16  For the derivation of the matrix A, see Appendix A3. 
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parameter values.  By its definition and due to the fact that A13=A31 = 0, 

( ) 3321123223332211det AAAAAAAA −−=A , which is evaluated, after some algebraic 

manipulation, as ( )








−+
G

W

dG
FdGp

D
bb

2

2

1

168 δρδρ .  Due to the assumption of 

diminishing marginal water product, the sign of det A depends on the sign of D1.  As 

shown in Appendix 3, the sign of D1 is indeterminate unless parameter values are 

given. As a result, the sign of det A is affected by parameter values as well as the 

optimal steady-state values. 

Q.E.D. 

Due to this structural instability it is necessary to set parameter values for studying the 

local stability properties.  The following parameter values are chosen as the base case. 

− σ (elasticity of marginal felicity): 1.7 

− ϕ (weight of market good consumption in satisfaction production): 0.6 

− δ (depreciation rate): 0.05 

− ρ (rate of pure time preference): 0.05 

− βK (factor share of private capital in market commodity production): 0.4 

− βQ (factor share of water in market commodity production): 0.3 

− βL (factor share of labour in market commodity production): 0.3 

Proposition 9: Local stability of optimal steady-state in base case 

Assuming the base case parameter values, the matrix A has always one unstable and 

two stable eigenvalues regardless of the number of the optimal steady- states.  Hence 

it is possible to put the economy on a stable manifold towards one of the optimal 

steady-states by choosing proper initial value of the rate of water charge p(0). 

Proof :  See Appendix A4. 

It is difficult to assert the robustness of the proposition 9 because it depends on the 

combination of parameter values.  Moreover, except for few cases including the base 

                                                                                                                                                     
17  The definition of bifurcation is from Gandolfo (1997). 
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case, the local stability conditions involve not only parameter values but also the 

optimal steady-state values.  Nevertheless, an unsubtle sensitivity analysis, in which 

each of parameter values alone is changed from the base case values, was conducted 

to illustrate its robustness.  The results of sensitivity analysis are shown in Table 1.   

Table 1  Results of Sensitivity Analysis 

Parameter Valid range Remark 

σ ≥ 1.62 If σ  ≤ 1.61 the sign of D1 is indeterminate 
unless the optimal values are obtained. 

ϕ ≤ 0.65 If ϕ  ≥ 0.66 the sign of D1 is indeterminate 
unless the optimal values are obtained. 

δ ≤ 0.05 If δ  ≥ 0.06 the sign of D1 is indeterminate 
unless the optimal values are obtained. 

ρ ≥ 0.05 If ρ ≤ 0.04 the sign of D1 is indeterminate 
unless the optimal values are obtained. 

βL | βK = 0.4 Entire range − 

βL | βQ = 0.3 ≤ 0.33 If βL ≥ 0.34 the sign of D1 is indeterminate 
unless the optimal values are obtained. 

It can be observed that the proposition 9 is sensitive to the parameter values, in 

particular to the depreciation rate δ considering the fact that some authors employ the 

value higher than 0.05 for δ.  For σ and ρ the valid range may cover the values 

reported in the existing literature.18  Though the base case parameter values are quite 

plausible, the proposition 9 seems quite sensitive to the parameter values.  For the 

parameter values outside the valid range shown in Table 1 the local stability 

conditions depends not only on the parameter values but also on the optimal 

steady-state values, and the local stability conditions may vary among optimal 

steady-states if there are more than one optimal steady-state. 

6. Conclusion 

In this chapter the analytic model is developed based on RCK growth model with 

introducing continuous monitoring-feedback in the households’ price expectation 

                                                      
18  See Footnote 6 of this chapter.  Ostry and Reinhart (1992) report empirical estimates of σ  and ρ  for each of 

African, Asian and Latin American countries, in which the African average is 2.26 for σ  and 0.064 for ρ  based 
on the data of Morocco, Egypt, Ghana and Côte d’Ivoire between 1968 and mid-1980’s. 
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formation as well as two-stage optimisation in which private optimisation and public 

optimisation processes are separated.  These novel features improve the applicability 

of RCK growth model to quantitative policy analysis.  This analytic model serves as a 

platform to develop the generalised “stylised” applied model which is a simple 

dynamic CGE model.  The stylised applied model is explained in the next chapter. 

The solution of the first-stage optimisation, i.e. the private optimisation, shows that if 

water is not scarce and the government can freely set the rate of water charge then the 

government can induce any desirable level of social welfare as the optimal 

steady-state by setting appropriate constant rate of water charge (Proposition 4). 

The solution of the second-stage optimisation, i.e. the public optimisation, provides 

several implications. 

Firstly, the long-run optimal trajectories exist only if the optimal level of public 

capital stock G*satisfies ( )
δ
ρε +≥ 1*GG , which rules out the possibility to keep 

eternally non-declining per capita consumption along the long-run optimal 

trajectories with population growth (Proposition 6).  Note that the elasticity of water 

product with respect to public capital εG can be interpreted as a kind of water scarcity 

indicator in the sense that water abundant economy could easily have high εG.  This 

result illuminates the importance of water scarcity issues in sustainable development.    

Secondly, the optimal steady-state(s) exist if and only if population is constant and the 

optimal level of public capital stock G*satisfies ( )
δ
ρε +=1*GG  (Proposition 7). 

Thirdly, the local stability properties of the optimal steady state(s) depend on the 

parameter values (Proposition 8). 

Lastly, with the base case parameter values the optimal steady state(s) exhibit saddle 

path stability associated with one unstable and two stable eigenvalues, under it is 

possible to realise the optimal steady-state(s) by choosing proper initial rate of water 

charge (Proposition 9). 
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These analytic results, mainly focusing on the neighbourhood of the optimal 

steady-state with constant population, are apparently of little relevance to 

underdeveloped economies as standalone but they provide useful benchmarks with 

which the results of more generalised model are evaluated. 
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Mathematical Appendices 

Appendix A1 Proof of Proposition 1 

Recall the “clairvoyant” consumption function at period t. 

( ) ( ) ( ) ( ) ( ){ }
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
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∞ ∫ −−

t

s
t dr dseswtmttc τντη , (A1.1) 
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σ
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ρν −≡4b ,  and 01
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σb . 

If we substitute true trajectories of exogenous variables w, r, and p with the 

households’ expectation about them, which we assume constant at the current value at 

period t, we obtain 

( ) ( ){ } ( ) ( ){ }( ) ( ) ( ){ }
( ){ }( )∫∫∫

∞ −−−∞ −−−∞ ∫ −−






−−
==

t
tstr

t
tstr

t

s
t dtr dse

trds
dtwdsetwdsetw νντν

ν
1  

 ( )
( ){ }

( ){ }( )[ ] ( )
( ){ }

( ){ }




 −

−
=

−
−= −−

∞→

∞−−− str

st
tstr e

tr
twe

tr
tw νν

νν
lim1 , (A1.2) 

( ){ } ( ){ } ( ){ } ( ){ } ( ){ }( )∫∫
∞ −−+∫ −∞

=
t

tstrbbbbs
t dtrbb

t
bb dsetpbdsetptpb 5432

1
5432

1
τ  

( ){ }
( )

( ){ }( )[ ] ( ){ }
( )

( ){ } .lim1 54

45

1
154

54

1
1





 −

−
=

−
= −

∞→

−
∞−−

−
strbb

st
tstrbb e

btrb
tpb

e
trbb

tpb ϕϕ

 (A1.3) 

By substituting (A1.2) and (A1.3) into (A1.1), the consumption function becomes 
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In order to converge two limits towards zero in (A1.4) we need the following two 

conditions. 

( ) 0>−νtr   ( ) ν>⇒ tr , and (A1.5) 

( ) 045 >− btrb  ( )
15

4

−
−

=>⇒
σ

ρνσ
b
b

tr . (A1.6) 

First we check the relativity between two critical values as follows. 
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Here recall that we previously assume that both the numerator and the denominator of 

the far right hand side are positive.  Now we can examine the following 3 cases. 

Case 1: r > ν 

Since (A1.5) and (A1.6) are satisfied, the above two limits converge to zero, and we 

obtain 
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Case 2: b4/b5 < r ≤ ν 

If r(t) = v, c(t) becomes positive infinity from (A1.1).  Otherwise the limit 

corresponding to (A1.5) diverges to positive infinity and that of (A1.6) converges to 

zero.  As a result, c(t) becomes negative infinity. 

Case 3: r ≤ b4/b5 

If r(t) = b4/b5, c(t) becomes positive infinity from (A1.1).  Otherwise, we need to 

modify (A1.4) into the following form to examine this case. 
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Further, the far right limiting term is modified as 
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Since r < ν we have the inequality 0>−>− νρρ r . 

Hence the far right hand side of (A1.10) diverges to positive infinity.  Since the first 

term of (A1.9) converges to zero and the second term diverges to positive infinity, c(t) 

diverges to positive infinity. 

In sum, we need the condition r > v to have sensible consumption decision.  When this 

condition is satisfied, the optimal consumption level is determined by (A1.8).  

Q.E.D. 

Appendix A2 Proof of Lemma 1 

Recall 
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Note that the denominator of the right hand side of (A2.1) is always positive for the 

given range. Since the numerator is a quadratic function of ξ with positive intercept 
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and the denominator converge to positive infinitesimal, we have ( ) ∞=
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Now we prove ( ) −∞=
−→

ξφ
ξξ

k

max
lim  as follows. 

First, rewrite (A2.1) as follows. 
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Q
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β
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Let D(ξ) denote the numerator of the left term of (A2.2).  The limit of D(ξ) as ξ to ξ max 

is as follows. 
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Since the corresponding denominator is positive infinitesimal, we have proven 
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Due to the fact that the denominator of (A2.1) is positive and the sign of limit towards 

upper bound is negative, it is necessary that Ω( ξ max) < 0.  Since Ω(0) = b14 > 0, there 
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 Q.E.D. 

 

Appendix A3  Derivation of A matrix 

Each element of the matrix A is derived as follows.  Note that the derivation often 

utilises the fact that 02 === kpG φφφ , in which the overline denotes the steady-state 

value. 
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Moreover, it is necessary to evaluate ppp εσε −  and kpk εσε −  for analysing the local 

stability condition.  They are evaluated as follows. 

Recall Eq. (3.9) with 86 ˆbb kp≡ξ . 
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From this expression, the price elasticity of consumption εp is evaluated as 
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and the elasticity of consumption with respect to private capital stock εk is 
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Further, we can derive  
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The far right partial derivative term is evaluated at 
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From equations (A3.1) - (A3.4) we obtain  

( )( ){ } ( )
( )pppQ

QL

Q

L

ppp

kpk

σεεβ

σβσφβ

β

β

σεε

σεε

−

−−−−−
+=

−

− 1111
. (A3.6) 

From (A3.1), (A3.3) and (A3.5) with Q
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kpk εσε −  is easily obtained by putting the above into Eq. (A3.6) as 
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Note that ppp εσε −  and kpk εσε −  are determined by parameters only. 

 

Appendix A4  Proof of Proposition 9 

Let g(r) denote the characteristic polynomial of A.  We have 

( ) ( ) AA dettrace 331122112112
23 +−−+×+−≡ rAAAAAArrrg , (A4.1) 

where 332211trace AAA ++≡A  and  

( ) 3321123223332211det AAAAAAAA −−≡A . 

The eigenvalues of A are the roots of the characteristic equation g(r) = 0. 

First, we have g(0) = det A.  det A is evaluated as 
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1.343 > 0.  With the assumption that KbbG 166<δ  or equivalently GK 793.0> with 

baseline parameter values, which seems universally to hold in the real world, we have 

the inequality 0103.0171 >=+−> bD ppp εσε .  As a result baseline parameter values 

establish det A > 0.  Similarly, the same assumption with the same parameter values 

establish trace A < 0 as proven below.   
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, of which the far right inequality holds 

because 0< 17bppp +− εσε < ( ) 17bppp +− ηεσε < b17 and kpk εσε − < 
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Hence, trace A = A11+ A22+ A33   
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Due to the fact that g(r) =  0 is a cubic function with negative parameter of cubic term 

with g(0) = det A > 0, there must be at least one positive real root.  Let α denote this 

positive real root (α > 0).  We can rewrite g(r) as 

( ) ( )( ) ( ) ( ) 221
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2 krkkrkrkrkrrrg αααα +−+−+−=++−−= . (A4.2) 

It is easy to see that the other two eigenvalues are given as 
2

4 2
2
11 kkk

r
−±−

= .  

By comparing Eq. (A4.1) with Eq. (A4.2), we have  

k1 = α − trace A > 0    and      0det
2 >=

α
Ak . 

As a result, there are two eigenvalues which are either negative real numbers or two 

complex conjugate numbers with negative real parts, in addition to the positive real 

eigenvalue α. 

Recall that the linearised system around the optimal steady state is in general unstable 

unless as many initial conditions as the number of unstable eigenvalues are freely 

chosen (Gandolfo 1997; Theorem 18.3).  Because the system has one control variable, 

i.e. the rate of water charge p(t), while there is only one unstable eigenvalues, it is 
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possible to stabilise the optimal trajectories around the optimal steady-state by 

choosing proper initial rate of water charge p(0). 

 Q.E.D. 

 

Appendix A5  List of Parameters 

ν : rate of population growth 

σ : elasticity of marginal felicity 

ϕ : weight of market good consumption in satisfaction production 

δ : depreciation rate 

ρ : rate of pure time preference 

βK : factor share of private capital in market commodity production 

βQ : factor share of water in market commodity production 

βL : factor share of labour in market commodity production 
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