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Abstract

In this paper, the interactions between environmental policy and trade
policy as well as their effect on growth in economies which care about the
environment are examined, in the context of a two-sector endogenous
growth model, where an infinitely-lived representative agent accumulates
two types of capital, physical capital, and human capital, which are used to
produce two goods. We study (and compare) the competitive equilibrium
of both the small open economy and the closed economy, focusing on
factor intensity conditions in both sectors and the behavior of relative
prices of final goods. As expected, we show that the dynamic behavior
of the equilibrium path depends heavily upon factor intensity conditions.
We examine the impact of environmental policy on prices and growth.
Also, we determine the optimal environmental policy and study how it
does change when the economy opens to the international market. Also,
we examine how it does interact with trade policy.
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1 Introduction

There is already a large literature studying the effect of pollution, as an external-

ity from production that decreases utility, on the optimal rate of growth. When

the negative effect of pollution on welfare is taken into account, the optimal

rate of growth always decreases, and it may even happen that optimal sustain-

able growth is not feasible, as shown in Stokey [21]. Therefore, environmental

concerns will eventually limit growth.

While the link between growth and the environment is important, trade

may also change environmental outcomes through different ways. Trade may

encourage a relocation of polluting industries from countries with strict environ-

mental policy to those with less stringent policy, which in turn may impact on

global pollution or on environmental policy because of concerns of international

competitiveness. In this context, it is our purpose to examine the interactions

between environmental policy and trade policy as well as their effect on growth

in economies which care about the environment.1

Previous studies on growth and the environment have either assumed that

there is a infinitely lived representative agent and that the political system acts

in its interest, or have considered instead that preferences are heterogeneous

and that there may exist intragenerational conflicts of interest, as in John and

Pecchenino [14]. In this case, there may be room for lobbying in favor of some

outcomes, and, consequently, the optimal policy may not be implemented. In a

static context, we should mention Fredriksson [11], Fredriksson [12], Fredriksson

and Svensson [13], Damania, Fredriksson and List [9], among others.2

In this paper, we investigate the dynamic behavior of a two-sector endoge-

nous growth model, where an infinitely-lived representative agent accumulates

two types of capital, physical capital and human capital, which are used to

produce two goods, and where the social planner represents the interests of so-

ciety. These two goods are produced under different constant returns to scale

technologies. Moreover, it is assumed that one of the sectors (sector 1 or T )

generates pollution as a by-product of production. A tax on output that pol-

1See Copeland and Taylor [6].
2This will be considered in future research.
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lutes is levied, which is taken as given by the agent. The revenues generated by

this tax represent real transfers to the agent from the government.

In a first step, we assume that this economy is a small open economy, while

in a second step we consider the case of a closed economy. We study the compet-

itive equilibrium in these economies, taking the pollution externality as given,

focusing on factor intensity conditions in both sectors and the behavior of rel-

ative prices of final goods. As expected, we show that the dynamic behavior

of the equilibrium path depends heavily upon factor intensity conditions. We

examine the impact of environmental policy on prices and growth. Also, we de-

termine the optimal environmental policy and study how it does change when

the economy opens to the international market. Also, we examine how it does

interact with trade policy. We consider both non separable and separable pref-

erences, as they reflect different views of society with respect to environmental

preservation.

We show that the optimal pollution tax in a small open economy with per-

fect capital mobility and non separable preferences is zero in the long-run. In

contrast, in a closed economy, a positive optimal pollution tax exists. With

separability, reflecting more conservative preferences towards environment, we

show that the optimal pollution tax would imply the equality between the rate

on traded bonds and the discount rate. In a closed economy, the optimal tax

is the highest possible or the one that eliminates growth. With non separable

preferences, the optimal tax is compatible with positive growth of the economy.

Finally, in a second-best world, we consider the case of a small open economy

with a tariff on imports. In this case, the second-best optimal pollution tax does

not vanish asymptotically, but, instead, should be equated to the tariff rate.

In the context of the endogenous growth literature, our results are related

to those in Turnovsky [22], and Sampaolesi [20]. While Turnovsky [22] develops

an endogenous growth model for a small open economy with perfect capital

mobility but without externalities, in the case of Sampaolesi [20], the small

open economy is completely specialized in the production of a pollution-intensive

good, abstracting from the possiblity of lending or borrowing from the outside

world. In this case, the optimal environmental tax reduces growth, as expected.
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The optimal tax will be positive whenever the pre-tax competitive path lies

above the efficient path. Finally, our results can also be related to the literature

on optimal taxation in representative-agent models. In particular, Judd [17],

Chamley [5], Jones, Manuelli and Rossi [15], [16], show that the optimal tax

rate on capital income is zero asymptotically whenever the planner solves a

unconstrained problem, that is, without fixed factors, restrictions on tax rates

or regimes, that can be due to political or other types of constraints. Moreover,

these results also hold in the context of a (small) open economy, as shown in

Correia [7], [8].

The remainder of the paper is organized as follows. Section 2 presents the

two-sector endogenous growth model for a small open economy and a closed

economy and examines the corresponding competitive equilibria with non sep-

arable preferences. Section 3 discusses the social planner’s problem with non

separable preferences. Section 4 considers the case of separable preferences. Sec-

tion 5 studies the optimal pollution tax in a second-best context characterized

by a tariff on imports, and, finally, Section 6 concludes the paper. Technical

details are presented in the appendix.

2 Competitive Equilibrium

2.1 Small Open Economy

The economy is characterized by a constant population, normalized to one.

The representative agent accumulates two types of capital for rental at the

competitively determined rental rate. The first is physical capital, K, which

is traded, and the second is human capital, H, which is nontraded. Neither of

these capital goods is subject to depreciation for simplicity.

These two forms of capital are used by the agent to produce a tradable good,

YT , taken to be the numéraire, and a nontradable good, YN . We assume linearly

homogeneous production functions:

YT = aK
α
TH

1−α
T ; 0 < α < 1 (1)

YN = bK
β
NH

1−β
N ; 0 < β < 1 (2)
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where KT , HT , KN and HN denote the allocation of the respective capital good

to the production of the traded good and nontraded good, respectively. Both

forms of capital are costlessly and instantaneously mobile across the two sectors,

with the sectoral allocations being constrained by:

KT +KN = K HT +HN = H (3)

The fact that the two production functions are linearly homogeneous in the

two production factors, K and H, is critical for an equilibrium with steady

endogenous growth to exist.

Let p denote the relative price of nontraded good in terms of traded good.

Production of good YT generates local pollution.3 σYT is the total damage

from pollution, where 0 < σ < 1 is an exogenously given damage coefficient of

pollution per unit of production of good YT :

P = σYT (4)

The government is restricted to one environmental policy instrument, a pol-

lution tax, τ ∈ T ⊂ R+, levied per unit of pollution produced in the tradable
sector, in order to internalize the environmental externality.4 Total revenue

from pollution taxes equals R(τ):

R(τ) = τσYT (5)

Also, it is assumed that the revenues generated by this tax represent real trans-

fers to the agent from the government, denoted by T = τσYT .

We assume that the accumulation of traded capital

K̇ = I (6)

involves costs represented by:

Γ(I,K) = I

µ
p∗ + h

I

2K

¶
(7)

where p∗ represents the exogenous world price of new traded capital and h rep-

resents adjustment costs.5 In order to undertake gross investment of I units of
3We build on Turnovsky[22] and introduce a pollution externality and environmental policy.
4 See Stokey [21], among others.
5 Since there are no trade frictions at this point, pT = p∗T = p

∗.
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capital, Ip∗ units of output must be set aside to be installed as capital, together

with h. I
2

2K units which are used during installation. Thus, gross investment

at rate I has an opportunity cost of I
¡
p∗ + h I

2K

¢
units of output. Total in-

stallation cost h I2

2K is nonnegative, with a minimum value of zero when gross

investment is zero. The linear homogeneity of this function is also necessary in

order for a steady-state equilibrium growth path to be sustained.

In addition to the two types of capital, the agent also accumulates net foreign

bonds, B, that pay an exogenously given world interest rate, r. Thus, the

agent´s budget constraint is given by:

Ḃ = (1− τσ)YT + pYN + rB + T − CT − pCN − Γ(I,K)− pḢ (8)

where T denotes the exogenous lump-sum transfer from the government, and

CT and CN are the agent´s consumption of the traded and nontraded goods,

respectively. CT and investment in physical capital are perfect substitutes, as

well as CN and investment in human capital. In other words, CT and I come

from a single output stream of goods, YT , and the same holds for CN and Ḣ,

which come both from YN .

The representative agent´s decision problem consists of choosing CT , CN ,

KT , KN , HT , HN , I,
.

H to maximize the present value of the stream of utility,

as follows:6

U =

Z ∞
0

1

γ

¡
Cθ
TC

1−θ
N Qµ

¢γ
e−ρtdt, 0 ≤ θ ≤ 1 (9)

subject to the constraints (1), (2), (3), (6), (7), (8) and the initial stocks of

assets K0, H0 and B0.

The environment affects society´s welfare, but not the production technol-

ogy. The effect on welfare enters directly in the utility function. Individual

utility depends on consumption of traded and nontraded goods as well as on

the flow of environmental services, Q, measured in quality units. This flow is

given by

Q = 1/P (10)

where P is the flow of pollution defined in (4), a production externality with a

negative impact on the flow of environmental services provided. As 0 < σ < 1

6The utility function of the representative agent is assumed to be of the constant elasticity
of marginal utility type. The intertemporal elasticity of substitution is given by 1

1−γ .
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the flow of pollution is less than proportional to total production of the tradable

good. This implies that the quality of the environment is a decreasing function

of the physical and human capital stocks. Even ignoring regenerating processes

that can stop the deterioration of the environment, equation (10) need not to

lead to catastrophe in finite time, as long as Q approaches zero asymptotically

(that is, lim
KT→∞

Q = 0; lim
HT→∞

Q = 0).

Each agent perceives P as exogenous, although, in the aggregate, it varies

over time. Therefore, the problem represents the competitive equilibrium for

this economy. Although P is taken as given, not only the pollution tax affects

the competitive outcome, but also the externality does.

For the utility function to be increasing and strictly concave in CT , CN and

Q it is assumed that µ > 0, γ < 1, µγ < 1 and γ (1 + µ) < 1. The value of γ

depends on the relationship between consumption and the flow of environmental

services. The sign of the cross derivatives ∂2U
∂CT ∂Q

= γθµCθγ−1
T C

(1−θ)γ
N Qµγ−1

and ∂2U
∂CN∂Q

= γ (1− θ)µCθγ
T C

(1−θ)γ−1
N Qµγ−1 depends on wether γ is smaller or

larger than 0. If γ > 0 both cross derivatives are positive. The marginal utility

of consumption is an increasing function of environmental quality, so the two

goods are substitutes. If γ < 0 both cross derivatives are negative. The marginal

utility of consumption is a decreasing function of environmental quality, so the

two goods are complements.7

After substituting some of the constraints, and eliminating KN , HN , the

current value Hamiltonian for this optimization problem is:

H =
1

γ

¡
Cθ
TC

1−θ
N P−µ

¢γ
+ q́I +λ[(1− τσ) aKα

TH
1−α
T + pb(K −KT )

β(H −HT )1−β +(11)

+rB +T − CT − pCN − I
µ
p∗ + h

I

2K

¶
− pḢ] + úḢ

where q́ is the shadow value of the traded capital stock, λ is the shadow value

of wealth held in the form of internationally traded bonds and ú is the shadow

value of the nontraded capital stock. Let q = q́/λ be the market value of traded

capital in terms of the price of foreign bonds.

7Thus, from (10), consumption and pollution are complements if γ > 0 and substitutes if
γ < 0.
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The first-order conditions with respect to the decision variables are given by:

θCθγ−1
T C

γ(1−θ)
N P−µγ = λ (12)

(1− θ)Cθγ
T C

γ(1−θ)−1
N P−µγ = λp (13)

(1− τσ) aαKα−1
T H1−α

T = pbβ(K −KT )
β−1(H −HT )1−β = rK (14)

(1− τσ) a (1− α)Kα
TH
−α
T = pb (1− β) (K −KT )

β(H −HT )−β = rH (15)

p∗ + h
I

K
= q (16)

ú

λ
= p (17)

Equations (12) and (13) relate the marginal utility of the two consumption

goods to the shadow value of wealth held in the form of internationally traded

bonds. Equations (14) and (15) equal the marginal returns to traded and non-

traded capital (rK and rH , respectively) across the two sectors of production.

rK and rH are both valued in terms of traded output. By inspection, we observe

that in the presence of a pollution tax the marginal returns of both traded and

nontraded capital are lower than in the absence of the tax. Equation (16) equals

the marginal cost of an additional unit of investment in traded capital to the

market value of capital. The marginal cost of investment includes the price of

new traded capital and the marginal installation cost hI/K. This equation can

be solved to yield the expression for the rate of accumulation of traded capital:

I

K
=
K̇

K
=
q − p∗
h

= φ (t) . (18)

Therefore, starting from an initial level of K0 the stock of capital at time t is

Kt = K0exp
nR t

0
φ (s) ds

o
. Equation (17) equals the value of nontraded capital

in terms of the price of foreign bonds to the relative price of the nontraded good.

The optimality conditions with respect to the traded bond B, the traded

capital K and the nontraded capital H, lead to the following arbitrage condi-

tions:

ρ− λ̇

λ
= r (19)

q̇

q
+
rK
q
+
(q − p∗)2

2hq
= r (20)
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ṗ

p
+
rH
p
= r (21)

Equation (19) equates the the marginal return on consumption to the fixed

rate of return on holding a foreign bond. Since both ρ and r are constants, it

implies a constant growth rate of the marginal utility λ. Equation (20) equates

the rate of return on the foreign bond to rate of return on traded capital taking

into account the installation costs of capital. Finally, equation (21) equates the

total rate of return on nontraded capital to the rate of return on the traded

bond.

Moreover, the following transversality conditions must hold:

lim
t→∞

λBe−ρt = 0; lim
t→∞

q́Ke−ρt = 0; lim
t→∞

úHe−ρt = 0 (22)

2.1.1 Determination of equilibrium

Define aggregate consumption C = CT +pCN , expressed in terms of the traded

good as numéraire. Together with the first-order conditions (12) and (13) we

have we have the demand functions for CT and CN :

CT = θC pCN = (1− θ)C (23)

and
ĊT
CT

=
Ċ

C
;

ṗ

p
+
ĊN
CN

=
Ċ

C
(24)

Combining the time derivative of (12) with (19) and (24) implies that ag-

gregate consumption grows at:

Ċ

C
=
r − ρ− γ (1− θ) ṗp − µγ

Ṗ
P

1− γ
= Φ(t) (25)

So, the growth rate on consumption depends on the rate of inflation of the

relative price, ṗp , as well as on the growth rate of pollution,
Ṗ
P . This last term

indicates the negative effect of a decrease in environmental quality on the steady-

state consumption path. Intuitively, a decrease in Q decreases the marginal

utility of consumption, decreasing the incentive to consume at all times.

Static allocation conditions

In this first stage, we express the sectoral capital intensities and marginal

products of traded capital and nontraded capital in terms of the relative price of
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nontraded to traded goods. We also express the absolute levels of the allocation

of the two types of capital in terms of the aggregate stocks K and H.

Let ω = KT

HT
denote the traded to nontraded capital ratio in the traded

sector. Dividing equation (14) by (15) we get the relationship between the

capital intensities in the two sectors:

KN

HN
=

µ
1− α

1− β

¶µ
β

α

¶
ω (26)

From (26), it is clear that the relationship between the two capital intensities

is the same as in the case without tax, as the tax is levied on traded output,

affecting simetrically both inputs.

Substituting this equation in (14) yields:

ω = δ

µ
1

1− τσ

¶ 1
α−β

p
1

α−β ; where δ =

"µ
b

a

¶µ
β

α

¶β µ
1− β

1− α

¶1−β# 1
α−β

(27)

Equations (26) and (27) yield the relationships between the sectoral capital

intensities and the relative price of nontraded to traded output. Together with

(14) and (15), we get the following expressions for the marginal products of the

two types of capital in terms of the relative price of nontraded to traded goods:

rK (p) = aα (1− τσ)ωα−1 = aαδα−1 (1− τσ)
1−β
α−β p

α−1
α−β (28)

rH (p) = a (1− α) (1− τσ)ωα = a (1− α) δα (1− τσ)
−β
α−β p

α
α−β (29)

Equation (26) together with the resource constraints of K and H (equations

(3)), determines the following expressions for the levels of the capital stocks

instantaneously employed in the two sectors:

KT =
β (1− α)ωH − α (1− β)K

β − α
; HT =

β (1− α)ωH − α (1− β)K

ω (β − α)
(30)

KN =
β (1− α) (K − ωH)

β − α
; HN =

α (1− β) (K − ωH)

ω (β − α)
. (31)

These expressions can be written in terms of the relative price p by substituting

for ω from (27). As it becomes clear from (30) and (31), the equilibrium sectoral

allocation of capital depends upon the relative sectoral capital intensity (β−α).
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In order to the sectoral capital allocations Ki and Hi to be nonnegative, the

sectoral and aggregate capital intensities must satisfy the following conditions:

If β > α :
rH
rK

µ
β

1− β

¶
=
KN
HN

>
K

H
>
KT
HT

=
rH
rK

µ
α

1− α

¶
(32)

If β < α :
rH
rK

µ
β

1− β

¶
=
KN
HN

<
K

H
<
KT
HT

=
rH
rK

µ
α

1− α

¶
(33)

Price dynamics

Combining the expressions for rK and rH , given by (28) and (29), with

the arbitrage conditions on the two types of capital, (20) and (21), we get the

dynamics of the relative price, p, and of the price of traded capital, q, as follows:

ṗ = rp− a (1− α) δα (1− τσ)
−β
α−β p

α
α−β (34)

q̇ = rq − aαδα−1 (1− τσ)
1−β
α−β p

α−1
α−β − (q − p

∗)2

2h
(35)

These equations are recursive: the relative price of the two goods evolves au-

tonomously according to (34), determining the evolution of the market price of

traded capital. Also, they emphasize the importance of adjustment costs. In

the absence of such costs h→ 0, q → p∗(from (16)) and (35) reduces to a static

equation determining p.

In order for the traded capital stock to follow a path of steady growth,

the stationary solution of the system of differential equations, (34) and (35),

(ṗ = q̇ = 0), must have at least one real solution. Thus, the steady-state

relative price of the nontraded good is:

p̃ =

∙
r

a (1− α) δα

¸α−β
β

(1− τσ) , (36)

Therefore, with tax, the relative price of the nontraded good in the steady-sate

is lower than without tax. For p̃, the steady-state rate of return on nontraded

capital rH (p̃) /p̃ just matches the return on traded bonds, r.

The corresponding steady-state solution of q, q̃, is the solution to the follow-

ing quadratic equation:

rq̃ − rK (p̃)−
(q̃ − p∗)2

2h
= 0 (37)
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This equation must have real roots so that the stock of traded capital ultimately

converges to a balanced growth path. This will be so if and only if:

rK (p̃) ≤ r
µ
p∗ +

hr

2

¶
(38)

The real roots for (37) are two: q̃1 = (p∗ + rh)−
q
(p∗ + rh)2 −

¡
p∗2 + 2hrK (p̃)

¢
(smaller) and q̃2 = (p∗ + rh) +

q
(p∗ + rh)2 −

¡
p∗2 + 2hrK (p̃)

¢
(larger). Thus,

there are two potential steady-state equilibrium growth rates for traded capital.

Figure 1 illustrates the phase diagram for the price dynamics (34) and (35),

assuming that (38) holds, so that a steady-state growth path for traded capital

exists. It is assumed that α > β, or that the tradable sector is relatively intensive

in traded capital, as we are considering that the production of the tradable good

generates pollution.

Insert Fig. 1

In Fig. 1, the equilibrium point B, which corresponds to the smaller equi-

librium q̃1, is a saddlepoint, with the stable saddlepath being the negatively

sloped locus LM . The equilibrium A, which corresponds to the larger equilib-

rium value, q̃2, is a locally stable node. But any time path which converges

to A violates the transversality condition for traded capital.8 Thus, the only

solutions for p and q which are consistent with both the transversality condition

and a steady growth path for K lie on the stable saddlepath LM .

Proposition 1 summarizes the behavior of prices.

Proposition 1 (i) If β > α, so that the nontraded sector is relatively intensive

in traded capital, the only solutions for p and q which are consistent with the

transversality condition on traded capital are p = p̃, given by (36), and q = q̃1,

the (unstable) steady-state solution given by the negative root to (37). In this

case there are no transitional dynamics in either the relative price of nontraded

8From the transversality condition on traded capital we have that lim
t→∞

q́Ke−ρt =

lim
t→∞

qλKe−ρt. Solving equations (18) and (19) we get Kt = K0e
R t
0

³
q−p∗
h

´
ds
and λt =

λ0e(ρ−r)t. Combining these expressions implies lim
t→∞

q́Ke−ρt = lim
t→∞

qλ0K0e
R t
0

³
q−p∗
h

−r
´
ds
.

Substituting the solution for the larger root q̃2 into this expression, this limit diverges, violat-
ing the transversality condition on the capital stock. For the smaller root q̃1 the transversality
condition holds.
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to traded goods or the market price of traded capital. In response to any shock,

these prices immediately jump to their respective new steady-state values. (ii)

If α > β, so that the traded sector is relatively intensive in traded capital , the

only solutions for p and q which are consistent with the transversality condition

on traded capital are that p and q lie on the stable saddlepath LM, ultimately

converging to p = p̃, given by (36), and q = q̃1, the (unstable) steady-state

solution given by the negative root to (37). In this case, a shock to the economy

will generate transitional adjustment paths in both p and q.

The significant feature of Proposition 1 is that it indicates that the dynamic

behavior of asset prices, pt and qt, is intimately tied to the production structure

of the economy, as reflected by the relative sectoral capital intensities. In case

(ii), α > β, as rK(p̃) with the tax is lower, the smaller equilibrium q̃1 is lower

than in the case without the tax. Therefore, both the price of the installed

capital and the relative price of the nontraded good are lower in the steady-

state after the tax is imposed.

The solution to the local dynamics of the linearized approximation to the

dynamic system represented by (34) and (35) is

pt − p̃ = [p0 − p̃] e
βr
β−α t (39)

qt − q̃ =

⎡⎣ (1−α)
(β−α)

rK(p̃)
p̃

(p∗+hr)−q̃
h − βr

β−α

⎤⎦ (pt − p̃) (40)

where q̃ is the smaller root q̃1. Since p∗+hr > q̃ and α > β, (40) is a negatively

sloped locus, being a linear approximation to LM in Fig. 1. Accordingly, the

two asset prices move in opposite directions during the transition. The slope of

(40) is negatively affected by the tax. Thus, a higher tax implies a lower slope

of the stable saddlepath LM , in absolute value.

The behavior of the sectoral capital intensities ω,KN/HN and of the marginal

products rK (p), rH (p), will mirror that of p. If α > β, ω, KN/HN , rK , and

rH will vary through time in response to the evolution of the relative price p.

Asset dynamics

In order to derive the dynamics of asset accumulation, it is useful to begin

with the equilibrium sectoral outputs in terms of the aggregate stocks of capital,
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K and H. These are derived from the production functions by using the opti-

mality conditions (14) and (15) together with (28) and (29), and the equilibrium

sectoral allocations in KT , HT , KN , HN , as determined in (30) and (31). The

following relationships hold:

YT =
−rK (1− β)K + rHβH

(1− τσ) (β − α)
; YN =

rK (1− α)K − rHαH
p (β − α)

(41)

From (14) and (15), we conclude that YT and YN with tax are the same with-

out tax. However, the value of the nontraded good in terms of the traded one,

pYN , is lower in the presence of a tax, as well as the value of total production,

YT + pYN .

Define aggregate wealth in terms of the traded bonds as numéraire, as

W = qK + pH +B (42)

Differentiating this expression with respect to time and noting: (i) the accu-

mulation equations (6) and (8); (ii) the production functions (1), (2), together

with (41); (iii) the definition of aggregate consumption C; (iv) the optimality

condition for investment (18); and (v) the arbitrage conditions (20) and (21),

the following relationship describing the rate of aggregate wealth accumulation

is obtained:

Ẇ (t) = rW (t) + T (t)− C (t) (43)

where T = στYT . The wealth accumulation depends on C, which evolves ac-

cording to (25), which in turn depends upon the rate of inflation of the relative

price, as well as on T . From the previous section we know that ṗ/p depends

upon the relative sectoral capital intensities. Thus, the entire profile of asset

accumulation depends upon whether β ≷ α. We will focus on α > β.

α > β : Traded sector relatively intensive in traded capital

From Proposition 1, the system eventually converges to the relative price of

the nontraded good p = p̃, given by (36), and to the price of the installed capital

q = q̃1, the steady-state solution given by the negative root to (37). With p

constant over time, q is also constant, so that, at the steady-state, traded capital

grows as follows:

K̇

K
=
q̃ − p∗
h

= φ̃; that is Kt = K0e
φ̃t (44)
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where q̃ is the smaller solution to (37). Since q̃ depends on the pollution growth

rate, φ̃ will be different. In particular, we can show that in the case α > β, φ̃

is lower with the tax than without it, since the smaller equilibrium q̃1 is now

lower (see Figure 1). In this case, φ̃ is given by:

φ̃ = r−
2

q
2rhp∗ + r2h2 − 2hαa

β−α+1
β δ

(β−α)(α−1)
β (1− α)

1−α
β r

α−1
β (1− τσ)

h
(45)

where ∂φ̃
∂τ < 0, as expected (see Bovenberg and Smulders [4], Elbasha and Roe

[10], and Reis [19], among others).

In the steady-state p remains at its steady-state level p̃ (ṗ = 0) so that

consumption grows at the steady-state growth rate :

Ċ

C
=
r − ρ

1− γ
−
µγ ṖP
1− γ

= ψ̃ −
µγ ṖP
1− γ

= ψ̃ − µγφ̃

1− γ
= Φ̃ that is Ct = C0e

Φ̃t

(46)

since we can show that in the steady-state pollution grows at the same rate as

capital. Without pollution, the growth rate of consumption in the steady-state

is given by ψ̃, which is determined by parameters that are constant. However,

in the presence of pollution, the growth rate of consumption is also determined

by the growth rate of capital, and therefore, by the productive structure of the

economy.

The pollution tax implies a lower growth rate on capital and a higher growth

rate on consumption, in the steady-state. Thus, there may exist a tax level for

which these two growth rates are the same.

While without the tax consumption and aggregate wealth grow at the same

rate in the steady-state, implying that Ẇ
W = Ċ

C = ψ̃, we can now show that

with tax and lump-sum transfers they may grow at different rates. To this end,

we still need to determine the evolution of T . From (41), and the fact that

K̇/K = Ḣ/H = φ̃,9 we can show that T grows at the rate φ̃, the same growth

rate of YT , implying that

Tt = T0e
φ̃t

9We will show later that this has to be the case.
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Substituting Ct and Tt in (43) and solving, we get10

Wt = −
T0e

φ̃t

r − φ̃
+
C0e

Φ̃t

r − Φ̃
(47)

Thus, the consumption-wealth ratio is:

C

W
=

C0e
Φ̃t

−T0eφ̃t
r−φ̃ + C0eΦ̃t

r−Φ̃

. (48)

As long as
˜

φ > Φ̃,11 or
˜

φ > ψ̃ 1−γ
1−γ(1−µ)

lim
t→∞

C

W
=

C0e
Φ̃t

−T0eφ̃t
r−φ̃ + C0eΦ̃t

r−Φ̃

= 0. (49)

Therefore, aggregate wealth and consumption grow at different rates. Asymp-

totically, we observe that ẆW = r + (φ̃− r) = φ̃.

Alternatively, if φ̃ = Φ̃, we obtain a constant equilibrium consumption-

wealth ratio
C

W
=

r − Φ̃³
1− T0

C0

´ . (50)

Therefore, aggregate wealth and consumption grow at the same rate in the

steady-state, as when there is no pollution tax.

As mentioned before, for α > β, there is an evolution of the relative price

p and of the market value of traded capital q along the stable saddlepath LM .

Since this path is negatively sloped, the two asset prices move in opposite di-

rections in this phase of transition.

Consumption grows according to equation (25), the solution to which is

Ct = C0exp
nR t

0
Φ (s) ds

o
. However, we cannot determine now how T evolves

outside the steady-state, since it depends on the evolution of H. Therefore, we

cannot solve (43) for W in this case.

The growth rate of traded capital is given by (18) and is also time varying,

reflecting the evolution of q along the stable locus. As q approaches its steady

state, the growth rate of traded capital approaches the steady-state rate given

in (44).

10From the transversality condition on H: r > Φ̃ and r > φ̃, as it will be shown later.
11We will show later that φ̃ ≥ Φ̃.
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We need to check whether and under what conditions the transversality

conditions for H and B hold. If the transversality condition for H is met, then

the transversality condition for bonds will also be met, since B =W −qK−pH.
Since the relative price of nontraded capital is time varying (pt), it is conve-

nient to focus on the rate of accumulation of nontraded capital in value terms,

which is given by:

d(pH)

dt
=

∙
r +

rH (p)β

p (α− β)

¸
(pH)− rK(p) (1− α)K

(α− β)
− (1− θ)C (51)

In the neighborhood of the steady state, this equation can be approximated by:

d(pH)

dt
=

∙
rα

(α− β)

¸
(pH)− r̃K (1− α)K

(α− β)
− (1− θ)C (52)

The time path of ptHt around p̃ and q̃ is given by:

ptHt =

⎡⎣p0H0 + (1− α) r̃K

(α− β)
h
φ̃− αr/ (α− β)

iK0 +
(1− θ)h

Φ̃− αr/ (α− β)
iC0

⎤⎦ e αr
α−β t

− (1− α) r̃K

(α− β)
h
φ̃− αr/ (α− β)

iK0e
φ̃t − (1− θ)h

Φ̃− αr/ (α− β)
iC0eΦ̃t (53)

From the transversality condition on H, (22), lim
t→∞

λpHe−ρt = 0. Substituting

for λt = λ0e
(ρ−r)t, we obtain lim

t→∞
λ0pHe

−rt = 0, which reduces to lim
t→∞

pHe−rt =

0. Applying this to the three exponential terms in (53), the following conditions

must hold: (i) αr/ (α− β) − r < 0, (ii) r > φ̃ and (iii) r > Φ̃. Condition (i)

is never met for α > β. In this case it is required that the term in the first

parentheses in (53) is zero. Condition (ii) is satisfied by the smaller root q̃1,

that is, by the transversality condition on traded capital (see footnote 8), while

(iii) has to be met.

Therefore, it is required that the following holds:

p0H0 +
(1− α) r̃K

(α− β)
h
φ̃− αr/ (α− β)

iK0 +
(1− θ)h

Φ̃− αr/ (α− β)
iC0 = 0 (54)

and r > Φ̃.

The conditions imposed guarantee that lim
t→∞

λWe−ρt = lim
t→∞

q́Ke−ρt = 0

are met. This implies lim
t→∞

λ [pH +B] e−ρt = 0. The transversality condition on
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nontraded capital and the solution for λt = λ0e
(ρ−r)t, imply that lim

t→∞
Be−rt = 0

and this condition is equivalent to the national intertemporal budget constraint.

So, equation (54) imposes conditions on the initial relative price of the two

goods, p0, and on the initial price of traded capital, q0, according to which the

resulting path of net exports so generated is consistent with the intertemporal

solvency for the economy.

Along its transitional adjustment path, nontraded capital Ht is constrained,

however, by the requirement that the steady-stateK/H ratio must lie within the

limits defined in (33) and for this to occur the growth rate of H must converge

to the growth rate of K. If θ = 1 so that the agent does not consume the

nontraded good (which is a reasonable assumption if H is interpreted as human

capital), the convergence of the growth rate of nontraded capital to the growth

rate of traded capital is assured (K̇/K = Ḣ/H = φ̃).

If θ < 1 so that the agent consumes some of the nontraded good, we must

impose an additional condition φ̃ ≥ Φ̃, so that convergence of growth rates
occurs. If Φ̃ > φ̃, the K/H ratio would converge to zero, violating (33).

Thus, assuming θ = 1 or φ̃ > Φ̃, nontraded capital grows at the same rate

as traded capital φ̃, and the ratio of traded to nontraded capital will converge

to a balanced growth path along which is given by

K

H
=

h
−φ̃ (α− β) + αr

i
(1− α)

p̃

rK (p̃)
(55)

implying that −φ̃ (α− β)+αr > 0, or φ̃ < αr
(α−β) , for the nonnegativity of (55).

Using the fact that in the steady state r̃H = p̃r and that r > φ̃, we can show

that the steady state ratio K/H (55) satisfies the inequalities in (33), as long

as the common equilibrium growth rate of capital φ̃ ≥ 0. If the growth rate is
strictly positive thenK/H lies within the limits of the inequality. If the economy

is stationary (φ̃ = 0), then K/H → KT /HT and the equilibrium output of

the nontraded good reduces to zero. The economy is fully specialized in the

production of the traded commodity. This is because with either no nontraded

consumption (θ = 1) or declining consumption (φ̃ = 0 > Φ̃) and a fixed stock of

nontraded capital, asymptotically, there is no demand for additional output of

the nontraded good. The case where φ̃ < 0, so that the economy is declining,
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drives K/H beyond the boundary of (33): K/H > KT /HT .

Since p̃ and rK (p̃) are both identically affected by the presence of the pol-

lution tax, the ratio K/H along the balanced growth path is now higher since

φ̃ is lower. If β > α, traded capital decreases relatively to the nontraded one

along the balanced growh path.

If φ̃ = Φ̃, K/H will also converge to a balanced growth path and the corre-

sponding expression can be obtained.

In summary, with a tax on pollution affecting symetrically both traded and

nontraded capital in the traded sector, the steady-state is now characterized by

a lower relative price of the nontraded good and a lower price of the installed

capital. The transitional adjustment path will be characterized by the asset

prices moving in opposite directions, reflecting the Stolper-Samuelson theorem

in trade theory.

In the steady-state equilibrium, the real rate of return on nontraded capital

measured in terms of the numéraire,
˜
rH
˜
p
, must equal the foreign interest rate. As

this rate is fixed, r̃H has to decrease in the same proportion as p̃. Therefore, the

relative capital intensity ratio in the nontraded sector, KN/HN , must remain

constant. Since capital can freely move between the two sectors, KT /HT = ω

is also constant. This implies that r̃K has to decrease in the same proportion

as p̃. Consequently, the lower return to traded capital reduces the market price

of installed capital, q̃. Hence, the growth rate of traded and nontraded capital,

φ̃, decreases.

Finally, the steady-state growth rate of consumption is now affected, since

it also depends on the growth rate of capital. This is in contrast to the case in

which the representative agent does not care about pollution and no pollution

tax is levied.

In the steady-state pollution increases at the rate φ̃, for a given tax rate.

In the presence of a pollution tax, the competitive equilibrium is characterized

by a lower growth rate on capital (traded and nontraded), and a higher growth

rate for consumption. When consumption grows at a lower rate than capital,

it is possible that the change in the disutility caused by pollution more than

compensates the change in utility generated by the increase in consumption.
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The larger the tax, the smaller will be p̃ and q̃, implying a lower φ̃. This results

from (45), as ∂
˜
φ

∂τ < 0. Therefore, eventually there will be a tax rate for which

φ̃ = Φ̃. This solution would be similar to the one for a closed economy, as we

will show later.

2.2 Closed Economy

In this section, we study the competitive equilibrium for the closed economy

case, keeping pollution exogenous as before. The representative agent produces

two types of goods, good 1, Y1, and good 2, Y2, using physical capital, K, and

human capital, H, that can be allocated to both sectors. In contrast to section

2.1, the accumulation of K does not involve adjustment costs.12 Production of

Y1 generates pollution (see (4), where T corresponds to sector 1), and, thus, the

pollution tax is levied on sector 1. Also, p denotes the relative price of good 2

in terms of good 1.

The representative agent´s problem consists of choosing C1, C2, K1, K2,

H1, H2 to maximize the present value of the stream of utility:

U =

Z ∞
0

1

γ
(Cθ

1C
1−θ
2 Qµ)γe−ρtdt (56)

subject to the constraints (1), (2), (3), (10), the budget constraint

K̇ = (1− τσ)Y1 + pY2 + T − C1 − pC2 − pḢ (57)

and the initial stocks of assets K0, H0.

The current value Hamiltonian for this optimization problem is:

H =
1

γ

¡
Cθ
1C

1−θ
2 P−µ

¢γ
+ q́[(1− τσ) aKα

1H
1−α
1 + pbKβ

2H
1−β
2 + (58)

+T − C1 − pC2 − pḢ] + úḢ

The first-order necessary conditions for an optimal solution are:

θCθγ−1
1 C

γ(1−θ)
2 P−µγ = q́ (59)

(1− θ)Cθγ
1 C

γ(1−θ)−1
2 P−µγ = q́p (60)

12See Appendix A for the case of the closed economy with adjustment costs.
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(1− τσ) aαKα−1
1 H1−α

1 = pbβKβ−1
2 H1−β

2 = rK (61)

(1− τσ) a (1− α)Kα
1H
−α
1 = pb (1− β)Kβ

2H
−β
2 = rH (62)

The optimality conditions with respect to K and H are given by:

q̇́

q́
= ρ− rK (63)

u̇́

ú
= ρ− rH

p
(64)

where p is also the shadow price of human capital in units of physical capital

(p = ú/q́).

The following transversality conditions must hold:

lim
t→∞

q́Ke−ρt = 0; lim
t→∞

úHe−ρt = 0 (65)

2.2.1 Determination of equilibrium

Defining aggregate consumption as before, the same demand functions for C1

and C2 are obtained (see (23) and (24)).

Combining the time derivative of (59) with (63) and (24) implies that aggre-

gate consumption grows at:

Ċ

C
=
rK − ρ− γ (1− θ) ṗp − µγ

Ṗ
P

1− γ
= Φ(t) (66)

As in the small open economy, the growth rate of consumption depends on

the rate of inflation of the relative price and on the growth rate of pollution.

However, rK is not exogenously determined.

Dividing equation (61) by (62) we get the same relationship between the

capital intensities in the two sectors as before (see (26)). Substituting this

equation in (61) yields, as in the small open economy:

ω = δ

µ
1

1− τσ

¶ 1
α−β

p
1

α−β (67)

or,

p = ∆(1− τσ)ωα−β (68)
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where ∆ =

∙¡
a
b

¢ ³
α
β

´β ³
1−α
1−β

´1−β¸
. Therefore, the expressions for rK and rH

in terms of p are the same as before (see (28), (29)). Likewise, similar expres-

sions are obtained for given absolute levels of the capital stocks instantaneously

employed in the two sectors (see (30), (31)). Also, the same conditions for the

nonnegativity of the sectoral capital allocations Ki and Hi hold (see (32), (33)).

Price dynamics

Combining the expressions for rK and rH , given by (28) and (29), with

the optimality conditions on K and H, (63) and (64), and since p = ú/q́, the

dynamics of the relative price p is given by:

ṗ

p
= (1− τσ)

1−β
α−β aαδα−1p

α−1
α−β − (1− τσ)

β
β−α a (1− α) δαp

β
α−β (69)

The key feature here is that the growth rate of p depends only on p, and not on

any other variables.

In the steady-state ṗ/p = 0. Thus, r̃K = r̃H/p̃. The steady-state relative

price of good 2 is:

p̃ = (1− τσ)
1

β−α+1

µ
α

1− α

1

δ

¶ α−β
β−α+1

(70)

Therefore, the tax decreases the relative price in the steady-state.

The form of equation (69) has immediate implications to the nature of the

dynamics. This relation is a differential equation in the single variable p. The

equation is stable if α > β (∂ (ṗ/p) /∂p < 0) and unstable if β > α (∂ (ṗ/p) /∂p >

0). Thus, if α > β - the case we regard as relevant - p converges monotonically

to its steady-state value.

Proposition 2 summarizes the behavior of prices.

Proposition 2 (i) If β > α, any departure of p from its steady-state value

would be magnified over time. p equals its steady-state value at all points in

time, p = p̃, given by (70). In this case, there is no transitional dynamics in

the relative price of good 2. In response to any shock, the price immediately

jumps its new steady-state value. (ii) If α > β, p converges monotonically to

its steady-state value p = p̃, given by (70). In this case, a shock to the economy

will generate transitional adjustment path.
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Similarly to the open economy, the dynamic behavior of pt is tied to the

production structure of the economy. Also, the price dynamics will be reflected

on the behavior of the sectoral capital intensities and on the marginal products

rK (p) and rH (p). From equation (67), the monotonic convergence of p when

α > β implies that ω = K1/H1 will also converge monotonically to its steady-

state value. Given the relationship between ω and K2/H2, also the sectoral

capital intensity in sector 2 converges monotonically to its steady-state value. ω

determines the marginal product of physical capital and the marginal product

of human capital in the production of goods. Therefore, rK and rH will also

converge monotonically to their steady-state values.13

Asset dynamics

The equilibrium sectoral outputs in terms of the aggregate stocks of capital,

K and H, are similiar to those of the small open economy:

Y1 =
−rK (1− β)K + rHβH

(1− τσ) (β − α)
; Y2 =

rK (1− α)K − rHαH
p (β − α)

(71)

Aggregate wealth, in terms of physical capital as numéraire, is given by:

W = K + pH (72)

Differentiating this expression with respect to time and noting: (i) the accu-

mulation equation (57); (ii) the equilibrium sectoral outputs defined in (71); (iii)

the definition of aggregate consumption C; (iv) the definition of p = ú/q́; and

(v) the optimality conditions (63) and (64), the following relationship describes

the rate of aggregate wealth accumulation:

Ẇ (t) = rKW (t) + T (t)− C(t) (73)

where T = στY1. The wealth accumulation depends on C and T. C evolves

according to (66), which, as before, depends upon the rate of inflation of the

relative price, and, consequently, depends upon the relative sectoral capital

intensities, as previously discussed. Thus, as in the open economy, the profile

of asset accumulation depends upon wether β ≷ α. Again, we focus on α > β.

In the steady-state, p is constant at p̃ and, consequently, so does rK (p̃) .

Consumption grows at the steady-state growth rate when the pollution growth
13 If β > α the unstable behavior of p would be transmitted accordingly to all these variables.
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rate is constant, which is the same as the capital growth rate in the steady-state.

Moreover, the capital growth rate is constant only when C and K grow at the

same rate. Thus, consumption grows at the steady-state growth rate:

Ċ

C
=

r̃K − ρ

1− γ (1− µ) = Φ̃ (74)

Furthermore, in the steady-state, the shares of physical and human capital in

the two sectors (K1/K, H1/H) are constant and C, K, H grow at the common

rate Φ̃ ( ĊC = K̇
K = Ḣ

H = Ṗ
P = Φ̃ = g). Since r̃K is negatively affected by the

pollution tax, ∂Φ̃
∂τ < 0, as expected. Thus, the larger the tax, the lower g will

be, that is, the lower is the growth rate of the economy, as well as pollution

growth.

Also, aggregate wealth grows at the same rate as consumption, in the steady-

state. T grows at Φ̃ since Ẏ1/Y1 = Φ̃. Substituting Ct = C0eΦ̃t and Tt = T0eΦ̃t

in (73) and solving, we get14

Wt = (C0 − T0)
eΦ̃t

r̃K − Φ̃
(75)

Thus, the consumption-wealth ratio is constant in the steady-state:

C

W
=

r̃K − Φ̃³
1− T0

C0

´ (76)

We need to check the conditions under which the transversality conditions

for K and H hold.

The time path of ptHt around the steady-state is given by:

ptHt =

∙
p0H0 +

[(1− α) r̃KK0 + (1− θ) (α− β)C0] p̃

p̃Φ̃ (α− β)− r̃Hα

¸
e

r̃Hα

p̃(α−β)

− [(1− α) r̃KK0 + (1− θ) (α− β)C0] p̃

p̃Φ̃ (α− β)− r̃Hα
eΦ̃t (77)

From the transversality condition on H, (65), lim
t→∞

úHe−ρt = lim
t→∞

q́pHe−ρt = 0.

Since q́t = q́0e(ρ−r̃K)t in the steady-state, we obtain lim
t→∞

q́0pHe
−r̃kt = 0, which

reduces to lim
t→∞

pHe−r̃Kt = 0. Applying this to the two exponential terms in

(77), the following conditions must hold: (i) (rHα) / (p (α− β)) − rK < 0 and

14From the tranversality condition on H: rK > Φ̃, as it will be shown later.
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(ii) rK > Φ̃. However, condition (i) is never met for α > β since rK = rH/p in

the steady-state. In this case the term in the first parentheses in (77) must be

zero:

p0H0 +
[(1− α) r̃KK0 + (1− θ) (α− β)C0] p̃

p̃Φ̃ (α− β)− r̃Hα
= 0 (78)

The conditions imposed also guarantee that lim
t→∞

q́Ke−ρt = 0. So, the transver-

sality condition on aggregate wealth is also met: lim
t→∞

q́We−ρt = 0.

As previously discussed, the growth rate of H is the same as the growth rate

of K, in the steady-state. The ratio of physical to human capital will converge

to a balanced growth path along which:

K

H
=

−p̃Φ̃ (α− β) + αrH (p̃)

(1− α) rK (p̃) + (1− θ) (α− β) C0K0

(79)

with −p̃Φ̃ (α− β) + αrH (p̃) > 0 for the nonnegativity of this ratio. Also,
rH
rK

³
β
1−β

´
< −p̃Φ̃(α−β)+αrH(p̃)

(1−α)rK(p̃)+(1−θ)(α−β)C0K0

< rH
rK

³
α
1−α

´
must hold, so that the

steady-state ratio K/H lies within the limits defined in (33).

In summary, with a tax on pollution affecting symetricallyK andH in sector

1, the steady-state is characterized by a lower relative price of good 2, p̃, which

increases consumption of good 2 relative to consumption of good 1, and by a

lower growth rate of the economy Φ̃. Since rK = rH/p evaluated at the steady-

state and rK are negatively affected by the pollution tax, the real rate of return

on human capital measured in terms of the numéraire, r̃H
p̃ , decreases. This

means that r̃H decreases more than proportionally to p̃. Therefore, the relative

capital intensity ratio in sector 2, K2/H2, decreases, as well as K1/H1. This

implies that r̃Kp̃ must increase, that is, r̃K decreases, but less than proportionally

to p̃.

3 Optimal Policy

In this section, we will determine how pollution affects optimal growth.
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3.1 Small Open Economy

The social planner’s problem consists of choosing CT , CN , KT , KN , HT , HN ,

I,
.
H to maximize the present value of the stream of utility, as follows:

U =

Z ∞
0

1

γ

¡
Cθ
TC

1−θ
N Qµ

¢γ
e−ρtdt (80)

subject to the constraints (1), (2), (3), (6), (7), (10),

Ḃ = YT + pYN + rB − CT − pCN − Γ(I,K)− pḢ (81)

and the initial stocks of assets K0, H0 and B0. In this case, pollution is not

exogenous, and the optimal pollution tax rate can be obtained by comparing the

results obtained in this case with those in the competitive equilibrium examined

in Section 2.

The current value Hamiltonian for the social planner´s problem is:15

H =
1

γ

¡
Cθ
TC

1−θ
N (σaKα

TH
1−α
T )−µ

¢γ
+ q´pI + λp[aK

α
TH

1−α
T + (82)

+pbKβ
NH

1−β
N + rB − CT − pCN − I

µ
p∗ + h

I

2K

¶
− pḢ] + u´pḢ

The first-order conditions with respect to the decision variables, after some

algebra, are given by:

θCθγ−1
T C

γ(1−θ)
N (σaKα

TH
1−α
T )−µγ = λp (83)

(1− θ)Cθγ
T C

γ(1−θ)−1
N (σaKα

TH
1−α
T )−µγ = λpp (84)

−µα
θ

CT
KT

+ aαKα−1
T H1−α

T = pbβKβ−1
N H1−β

N (85)

−µ (1− α)

θ

CT
HT

+ a (1− α)Kα
TH
−α
T = pb (1− β)Kβ

NH
−β
N (86)

p∗ + h
I

K
= qp (87)

u´p
λp
= p (88)

The first term on the left hand side of equations (85) and (86) reflects the

marginal social damage of pollution.

15Subscript p refers to the social planner’s problem.
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The optimality conditions with respect to B, K and H lead to similar con-

ditions to those obtained in the competitive equilibrium:

ρ− λ̇p
λp
= r (89)

q̇p
qp
+
pbβKβ−1

N H1−β
N

qp
+
(qp − p∗)2

2hqp
= r (90)

ṗ

p
+
pb (1− β)Kβ

NH
−β
N

p
= r (91)

Given the similarity of the first-order conditions with respect to CT and

CN both in the social planner´s problem and in the competitive equilibrium,

it is easily shown that the relationships between the two types of consumption

and aggregate consumption still hold (see (23) and (24)). Therefore, aggregate

consumption grows according to:

Ċ

C
=
r − ρ− γ (1− θ) ṗp − µγ

h
α K̇T

KT
+ (1− α) ḢT

HT

i
1− γ

(92)

Thus, from (90) and (85) evaluated at the steady-state, the growth rate of

consumption in the steady-state is given by:

Ċ

C
=

aαω̃α−1−µα
θ

CT
KT

q̃p
+

(q̃p−p∗)2
2hq̃p

− ρ− µγφ̃
1− γ

(93)

The term −µαθ
CT
KT

summarizes the adverse effect of capital accumulation

on the environment and, consequently, on the efficient growth path. That is,

an increase in the level of capital is associated with larger emissions, which

decreases environmental quality and, therefore, decreases utility. The optimal

environmental policy is summarized in the following proposition.

Proposition 3 The optimal pollution tax vanishes asymptotically.

Proof. The planner chooses τ to maximize social utility (80) subject to the

representative agent behavior, as given by (12)-(21). Substitution of (12)-(21)

into (83)-(91) shows that the optimal tax is a function of the marginal social

damage of pollution and in the neighborhood of the steady-state can be written

as:

τ̃ = µ
C

P
= µ

C0e
Φ̃t

P0eφ̃t
(94)

Since φ̃ > Φ̃, asymptotically, the result follows.
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Therefore, with no environmental policy in the rest of the world and perfect

capital mobility, the externality is eliminated and the long-run optimal tax for

the small open economy is zero.

3.2 Closed economy

Similarly, the social planner’s problem can be stated for the closed economy

case. The planner chooses C1, C2, K1, K2, H1, H2 to maximize:

U =

Z ∞
0

1

γ
(Cθ

1C
1−θ
2 Qµ)γe−ρtdt (95)

subject to the constraints (1), (2), (3), (10),

K̇ = Y1 + pY2 − C1 − pC2 − pḢ (96)

and the initial stocks of assets K0,H0.

The current value Hamiltonian for this optimization problem is:

H =
1

γ

£
Cθ
1C

1−θ
2 (σaKα

1H
1−α
1 )−µ

¤γ
+q´p

h
aKα

1H
1−α
1 + pbKβ

2H
1−β
2 − C1 − pC2 − pḢ

i
+ u´pḢ (97)

The first-order necessary conditions for an optimal solution, after some al-

gebra, are given by:

θCθγ−1
1 C

γ(1−θ)
2

¡
σaKα

1H
1−α
1

¢−µγ
= q´p (98)

(1− θ)Cθγ
1 C

γ(1−θ)−1
2

¡
σaKα

1H
1−α
1

¢−µγ
= q´pp (99)

−µα
θ

C1
K1

+ aαKα−1
1 H1−α

1 = pbβKβ−1
2 H1−β

2 (100)

−µ (1− α)

θ

C1
H1

+ a (1− α)Kα
1H
−α
1 = pb (1− β)Kβ

2H
−β
2 (101)

The optimality conditions with respect to K and H are similar to those of the

competitive equilibrium:

q̇´p
q́p
= ρ− pbβKβ−1

2 H1−β
2 (102)

u̇´p
úp
= ρ− pb (1− β)Kβ

2H
−β
2

p
(103)
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Accordingly, consumption along the efficient path grows at the rate:

Ċ

C
=
pbβKβ−1

2 H1−β
2 − ρ− γ (1− θ) ṗp − µγ

h
α K̇1

K1
+ (1− α) Ḣ1

H1

i
1− γ

(104)

Thus, from (100) evaluated at the steady-state, the stationary growth rate of

consumption is:
Ċ

C
=
aαω̃α−1 − µα

θ
C1
K1
− ρ

1− γ (1− µ) (105)

where the term−µαθ
C1
K1
summarizes the negative externality caused by pollution.

The optimal environmental policy is summarized in the following proposition.

Proposition 4 The first best-policy consists of a constant and positive tax on

production of the polluting good given by τ̃ = µC0/P0, where C0 and P0 represent

the initial conditions on consumption and pollution, in the neighborhood of the

steady-state, respectively.

Proof. The competitive equilibrium steady-state growth rate of consumption

is given by (74), which according to (61) evaluated at the steady-state, can be

rewritten as:
Ċ

C
=

r̃K − ρ

1− γ (1− µ) =
(1− τ̃σ) aαω̃α−1 − ρ

1− γ (1− µ) (106)

The efficient steady-state growth rate of consumption is given by (105).

Equating the competitive equilibrium path to the optimal social path and solv-

ing for τ we obtain the optimal pollution tax τ̃ = µC0/P0.

The tax is constant and positive in the steady-state, since all variables grow

at the same growth rate. The optimal tax is positive since the pre-tax compet-

itive path lies above the efficient path. This is in contrast to the small open

economy, where the optimal tax rate is zero asymptotically.

4 Separable preferences

4.1 Small open economy

In the previuos sections, we have assumed non separable preferences between

consumption and environmental quality. However, if the individual attributes a
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very high value to a good environmental quality he may not be willing to trade-

off pollution for consumption in the margin. If this is the case, preferences are

better represented by a separable utility function. Ultimately, the choice of the

utility function is an empirical question.

Let us define the separable utility function:16

U =
1

γ

¡
Cθ
TC

1−θ
N

¢γ − Pµ
µ
, µ > 0, 0 ≤ θ ≤ 1 (107)

For the utility function to be increasing in CT , CN and decreasing in P , and

strictly concave in CT , CN and P it has to be the case that µ > 1, and γ < 1.

Solving for the competitive equilibrium, the current value Hamiltonian is:

H =

µ
1

γ

¡
Cθ
TC

1−θ
N

¢γ − Pµ
µ

¶
+ q́I + λ[(1− τσ) aKα

TH
1−α
T + (108)

pbKβ
NH

1−β
N + rB + T − CT − pCN − I

µ
p∗ + h

I

2K

¶
− pḢ] + úḢ

The first-order conditions with respect to CT and CN become:

θCθγ−1
T C

γ(1−θ)
N = λ (109)

(1− θ)Cθγ
T C

γ(1−θ)−1
N = λp (110)

The remaining optimality conditions are similar to those previously obtained

with a non separable utility function (see (14)-(21)).

The relationships between CT , CN and C still hold (see (23)). However,

given the separability of the utility function, the aggregate consumption growth

rate is not affected by pollution growth:

Ċ

C
=
r − ρ− γ (1− θ) ṗp

1− γ
= ψ (t) (111)

In the steady-state, the growth rate of consumption ψ̃ is determined by pa-

rameters that are constant: the rate of return on foreign bonds, r, the domestic

rate of time preference, ρ, and the intertemporal elasticity of substitution, 1
1−γ .

The discussion surronding the competitive equilibrium for a small open econ-

omy with non separable preferences still applies. The main difference relies on

the growth rate of consumption in the steady-state and its implications.

16See Stokey [21].
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Solving for the social planner´s problem, the current value Hamiltonian is:

H =

Ã
1

γ

¡
Cθ
TC

1−θ
N

¢γ − ¡σaKα
TH

1−α
T

¢µ
µ

!
+ q´pI + λp[aK

α
TH

1−α
T + (112)

pbKβ
NH

1−β
N + rB − CT − pCN − I

µ
p∗ + h

I

2K

¶
− pḢ] + u´pḢ

The first-order conditions with respect to the decision variables are given by:

θCθγ−1
T C

γ(1−θ)
N = λp (113)

(1− θ)Cθγ
T C

γ(1−θ)−1
N = λpp (114)

−
¡
σaKα

TH
1−α
T

¢µ
αK−1T + λp

h
aαKα−1

T H1−α
T − pbβKβ−1

N H1−β
N

i
= 0 (115)

−
¡
σaKα

TH
1−α
T

¢µ
(1− α)H−1T +λp

h
a (1− α)Kα

TH
−α
T − pb (1− β)Kβ

NH
−β
N

i
= 0

(116)

p∗ + h
I

K
= qp (117)

u´p
λp
= p (118)

The usual arbitrage conditions hold (see (89)-(91)). Similarly, the first term

on the left hand of (115) and (116) reflects the marginal social damage of pollu-

tion. As in the competitive equilibrium, the growth rate of aggregate consump-

tion is not affected by the growth rate of pollution.

Similarly, we can show that the optimal tax is a function of the marginal

social damage of pollution and it is given as follows:

τ =
1

θθγ (1− θ)(1−θ)γ
p(1−θ)γC1−γPµ−1 (119)

The existence of a balanced growth path for capital with a constant pollution

tax is only possible in a stationary economy (Ċ/C = K̇/K = 0). So, φ̃ = Φ̃ = 0

must hold, 17 corresponding to the highest possible pollution tax rate. This is a

well known result in the literature for a closed economy (see Stokey [21], or Reis

[19]). Separability of the utility function is associated with a null growth rate of

the economy, in the presence of a production externality. However, in a small

17 τ comes from the solution for q̃ = p∗, evaluated at r = ρ, or, alternatively, τ is the tax
level for which the growth rate of consumption and the growth rate of capital are the same in
the steady-state, ψ̃ = φ̃ = r−ρ

1−γ = 0.
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open economy, the interest rate, r, is exogenous, and, thus, cannot be adjusted,

in contrast to the closed economy case. Therefore, the optimal pollution tax rate

may not exist in a small open economy when the utility function is separable,

except when r = ρ. This is exactly equivalent to the result for a closed economy,

as we will show below. This has important consequences from a policy point of

view.

4.2 Closed Economy

If we assume a separable utility function, the current value Hamiltonian for the

competitive equilibrium is given by:

H =

µ
1

γ

¡
Cθ
1C

1−θ
2

¢γ − Pµ
µ

¶
+ q́[(1− τσ) aKα

1H
1−α
1 + (120)

pbKβ
2H

1−β
2 + T − C1 − pC2 − pḢ] + úḢ

The first-order conditions with respect to C1 and C2 are:

θCθγ−1
1 C

γ(1−θ)
2 = q́ (121)

(1− θ)Cθγ
1 C

γ(1−θ)−1
2 = q́p (122)

The remaining optimality conditions are similar to those previously obtained

with a non separable utility function (see (61)-(64)). Given the optimality condi-

tions with respect to the two types of consumption, the aggregate consumption

growth rate is:
Ċ

C
=
rK − ρ− γ (1− θ) ṗp

1− γ
(123)

Thus, the steady-state growth rate of the economy is g = r̃K−ρ
1−γ . The remain-

ing features of the model are similar to those of the competitive equilibrium with

a non separable utility function.

Solving for the social planner´s problem, the current value Hamiltonian is:

H =

Ã
1

γ

¡
Cθ
1C

1−θ
2

¢γ − ¡σaKα
1H

1−α
1

¢µ
µ

!
+ (124)

+q´p

h
aKα

1H
1−α
1 + pbKβ

2H
1−β
2 − C1 − pC2 − pḢ

i
+ u´pḢ

The first-order necessary conditions for an optimal solution are:

θCθγ−1
1 C

γ(1−θ)
2 = q´p (125)
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(1− θ)Cθγ
1 C

γ(1−θ)−1
2 = q´pp (126)

−
¡
σaKα

1H
1−α
1

¢µ
αK−11 + q´p

h
aαKα−1

1 H1−α
1 − pbβKβ−1

2 H1−β
2

i
= 0 (127)

−
¡
σaKα

1H
1−α
1

¢µ
(1− α)H−11 +q´p

h
a (1− α)Kα

1H
−α
1 − pb (1− β)Kβ

2H
−β
2

i
= 0

(128)

The optimality conditions with respect to the stock variables are the same

as (102) and (103). Similarly to the competitive equilibrium, the growth rate

of aggregate consumption is not affected by the growth rate of pollution.

The optimal tax is given by:

τ =
1

θθγ (1− θ)(1−θ)γ
p(1−θ)γC1−γPµ−1 (129)

The existence of a balanced growth path with a constant tax in this economy

is only possible in a stationary economy (Ċ/C = K̇/K = 0). Thus, r̃K = ρ

must hold, meaning that the first-best solution is implemented through:

0 < τ =
1

σ
− ρ

β−α+1
β

σa
β−α+1

β αδ
(α−1)(β−α)

β (1− α)
1−α
β

≤ 1 (130)

Given the environmental externality, the first-best policy consists of impos-

ing the highest possible constant tax on the production of the polluting good,

that is, the one for which growth is eliminated. This is a feasible outcome

since the growth rate of the economy is endogenously determined. This re-

sult contrasts to the one obtained for the closed economy with non separable

preferences, where the first-best policy was compatible with a positive growth

rate of the economy. These findings support our previous comments according

to which separability reflects more conservative preferences of society towards

environmental quality.

5 Trade Policy: the case of a tariff

We now consider trade policy. We go back to the initial set up of a small open

economy with non separable preferences, and with no pollution tax. Since we

are in the case of a small open economy, we know that the optimal policy is a

zero tariff. However, in the real world, economies often use trade policy in a

second-best context, as an instrument of environmental policy.
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Because countries differ in their location, proximity to suppliers and existing

trade barriers, domestic prices will not be identical to world prices:

pT = ²p
∗
T (131)

where ² measures the importance of trade frictions and p∗T is the common world

price of YT . We assume that the country imports YT (CT > YT ), and is subject

to a commercial tariff, so that ² > 1. A movement of ² toward 1 captures

a reduction in trade frictions. Because ² is greater than 1 for a dirty good

importer this implies ∂²/² < 0.

In the previous sections, we assumed free trade (pT = p∗T ). Now, with trade

frictions, and, in particular, with a tariff on the imported good, pN
pT∗

increases

in equilibrium, since the tariff discriminates against the traded good in the

domestic market.

Following similar arguments to those used in previous sections, based on

the expressions for the marginal products of the two types of capital, we can

show that both rK (p̃) and rH (p̃) increase. In the steady-state, rH (p̃) increases

in the same proportion as p̃, so that rH(p̃)
p̃ = r. Also, the capital intensities

do not change in both sectors. The higher return to traded capital increases

the price of installed capital q̃. Hence, the growth rate of capital increases

and, consequently, the growth rate of consumption decreases. The higher ²,

the higher the difference between capital and consumption growth rates in the

steady-state.

We can also show that the optimal tariff is zero, since there is a balanced

growth path only when φ̃ > Φ̃. Thus, free trade is the first-best solution in a

small open economy, asymptotically.

However, if the commercial tariff already exists and cannot be removed for

political reasons, should the planner use a pollution tax to decrease production

of the polluting good and compensate the effect of the tariff? From our pre-

vious analysis, we know that in this second-best world, the tax should exactly

match the tariff rate, asymptotically. Therefore, the second-best pollution tax

is larger than the first-best one, which we have shown to be zero in Proposition

3, but lower than in a static world. In a similar (second-best) static context,
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Fredriksson [12] has shown that the second-best pollution tax should be larger

than the tariff.

6 Conclusion

This paper presents a two-sector endogenous growth model with physical and

human capital where pollution is generated as a by-product of the production of

the good relatively intensive in physical capital. The competitive equilibrium of

this economy with a pollution tax levied on the output of the good that pollutes

is examined in two cases: (i) small open economy with physical capital as the

traded capital and the human capital as the nontraded one, facing a perfect

international bond market, and (ii) closed economy.

In the case of the open economy, and in contrast to the case without pollu-

tion, the rate of growth of consumption is also determined by the growth rate of

capital. The results obtained depend on the relative intensities of the two sec-

tors in the two types of capital. In particular, assuming that the traded sector

is relatively intensive in traded capital, both asset prices will follow transitional

paths before eventually converging to their respective steady-state equilibria.

This also holds in the closed economy.

In the presence of a tax levied on the output that pollutes, the growth rate

of capital decreases, while the consumption growth rate increases, since it also

depends on the growth rate of capital. As the growth rate on capital has to

be at least the one of consumption, there might exist a threshold tax level for

which the two tax rates are equated (on capital and consumption). However, we

show that the optimal pollution tax vanishes asymptotically when preferences

are non separable. In contrast, with separability, no optimal pollution tax may

exist.

In the case of the closed economy, a positive pollution tax also decreases the

steady-state growth rate of the economy (and pollution growth), yet keeping

positive growth, except in the case of separable preferences where the optimal

pollution tax eliminates growth. This reflects the more conservative preferences

towards environment embedded in separable preferences.

Finally, we show how the optimal pollution tax rate interacts with trade
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policy, in particular, in the presence of a tariff on imports. In this second-best

world, the optimal pollution tax is positive in the long-run and should be equated

to the tariff rate. This is in contrast to the results found in a first-best world,

as well as those obtained in a static second-best context, where Fredriksson [12]

has shown that the second-best pollution tax should be larger than the tariff.

7 Appendix A - Competitive equilibrium for the
closed economy with adjustment costs

We study the competitive equilibrium for the closed economy, keeping pollution

exogenous. In order to make the results comparable with those obtained for the

small open economy, we also consider adjustment costs for capital.18

The representative agent´s problem now becomes:

Max

Z ∞
0

1

γ
(Cθ

1C
1−θ
2 Qµ)γe−ρtdt (a.1)

s.t. K = K1 +K2 (a.2)

H = H1 +H2 (a.3)

K̇ = IK (a.4)

Ḣ = IH (a.5)

(1− τσ)Y1 + T = C1 + IK

µ
1 + h

IK
2K

¶
(a.6)

Y2 = C2 + IH (a.7)

Y1 = aKα
1H

1−α
1 (a.8)

Y2 = bKβ
2H

1−β
2 (a.9)

Q =
1

P
(a.10)

K0, H0 given (a.11)

The current value Hamiltonian for this optimization problem is:

H =
1

γ

"µ
(1− τσ)aKα

1H
1−α
1 + T − IK

µ
1 + h

IK
2K

¶¶θ ³
bKβ

2H
1−β
2 − IH

´1−θ
P−µ

#γ
+q́IK + úIH (a.12)

18 In the context of a Ramsey model with adjustment costs, see Abel and Blanchard ([1]).
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After making some substitutions, the first-order conditions with respect to

the decision variables K1,H1, IK , IH are given by:

(1− τσ)aαKα−1
1 H1−α

1 =
(1− θ)C1

θC2
(bβKβ−1

2 H1−β
2 ) (a.13)

(1− τσ)aKα
1 (1− α)H−α1 =

(1− θ)C1
θC2

(bKβ
2 (1− β)H−β2 ) (a.14)

(Cθ
1C

1−θ
2 P−µ)γθC−11

µ
1 + h

IK
K

¶
= q́ (a.15)

(Cθ
1C

1−θ
2 P−µ)γ(1− θ)C−12 = ú (a.16)

Defining aggregate consumption as before, the same demand functions for C1

and C2 are obtained (see (23) and (24)).19

We can rewrite the first-order conditions with respect to K1 and H1, as

follows:

(1− τσ)aαKα−1
1 H1−α

1 = pbβKβ−1
2 H1−β

2 = rK (a.17)

(1− τσ)aKα
1 (1− α)H−α1 = pbKβ

2 (1− β)H−β2 = rH , (a.18)

which are exactly the same as in the small open economy.

The first-order conditions with respect to IK and IH yield the following

relationship between p (the relative price of good 2 in terms of good 1) and ú/q́

(the opportunity cost of H in terms of the opportunity cost of K):

p =
ú

q́

µ
1 + h

IK
K

¶
(a.19)

The optimality conditions with respect to K and H are:

q̇́

q́
= ρ− 1¡

1 + h IKK
¢ h
2

µ
IK
K

¶2
− rK¡

1 + h IKK
¢ (a.20)

u̇́

ú
= ρ− rH

p
(a.21)

19Solving the utility maximizing problem: Max 1
γ

³
Cθ
1C

1−θ
2 Qµ

´γ
s.t. C1 + pC2 = W , we

get the following relationship between the two types of consumption θC2
(1−θ)C1

= 1
p
, which

together with the definition of aggregate consumption leads to the consumption of the two
goods in (23).
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Combining the time derivative of (a.15) with (24) implies that aggregate

consumption grows at the following rate:

Ċ

C
=

1³
1+h

IK
K

´ h
2

¡
IK
K

¢2
+ rK³

1+h
IK
K

´ − ρ− (1− θ)γ ṗp +
h
d( IKK )

dt³
1+h

IK
K

´ − µγ ṖP
1− γ

(a.22)

Dividing equation (a.17) by (a.18) we get the same relationship between the

capital intensities in the two sectors as before (26). Substituting this equation

into (a.17) yields:

ω = δ

µ
1

1− τσ

¶ 1
α−β

p
1

α−β (a.23)

or,

p = ∆(1− τσ)ωα−β (a.24)

where ∆ =
∙¡

a
b

¢ ³
α
β

´β ³
1−α
1−β

´1−β¸
. Therefore, the expressions for rK and rH in

terms of p are the same as (28) and (29), respectively. Likewise, similar expres-

sions are obtained for given absolute levels of the capital stocks instantaneously

employed in the two sectors (see (30), (31)).

A.1. Price Dynamics

In this case, in order to have a positive consumption growth rate in the

steady-state, q̇́/q́ must be negative, since from (a.22),

Ċ

C
=
− q̇́q́ − µγ

Ṗ
P

1− γ
(a.25)

where Ṗ
P > 0.

Assuming that q̇́/q́ = −Λ in the steady-state, and since p = ú
q́

¡
1 + h IKK

¢
,

we get:

ṗ

p
=
u̇́

ú
− q̇́
q́
+

h
d
³
IK
K

´
dt¡

1 + h IKK
¢ (a.26)

or,

ṗ

p
= −(1− τσ)

β
β−α a(1− α)δαp

β
α−β +

1¡
1 + h IKK

¢ h
2

µ
IK
K

¶2
+ (a.27)

+
(1− τσ)

1−β
α−β aαδα−1p

α−1
α−β¡

1 + h IKK
¢ +

h
d
³
IK
K

´
dt¡

1 + h IKK
¢
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The growth rate of p depends not only on p, but also on the growth rate

of capital. Therefore, ṗ/p is constant if and only if (i) p is constant and (ii)

IK/K = K̇/K is constant. So, in the steady-state ṗ/p = 0. Using (a.26) and

assuming that q̇́/q́ = −Λ in the steady-state, we have

(1− τσ)
β

β−α a(1− α)δαp
β

α−β = ρ+ Λ. (a.28)

Thus, the relative price of the nontraded good in the steady-state is:

p̃ = (1− τσ)

µ
ρ+ Λ

a (1− α) δα

¶α−β
β

(a.29)

A.2. Characterization of Steady-State

Given that (i) Ċ1
C1
= Ċ2

C2
= Ċ

C , (ii)
Ẏ1
Y1
= K̇1

K1
= Ḣ1

H1
= K̇2

K2
= Ḣ2

H2
= K̇

K = Ḣ
H =

Ẏ2
Y2
= Ṗ

P , (iii)
K̇
K is constant, then all variables grow at the same constant rate

g = Φ̃ = Ċ
C = K̇

K = Ḣ
H = Ṗ

P . From (a.22) evaluated at the steady-state, we

obtain the following expression

µγΦ̃+ρ+ Φ̃(1−γ) = 1³
1 + hΦ̃

´ h
2
Φ̃2+

(1− τσ)aαδα−1
³

ρ+Λ
a(1−α)δα

´α−1
β

1 + hΦ̃
(a.30)

that implicitly defines the growth rate along the balanced growth path in terms

of the parameters of the model, where rK(p̃) = (1− τσ)aαδα−1
³

ρ+Λ
a(1−α)δα

´α−1
β

,

and Λ = [1− γ(1− µ)] Φ̃ from (a.25).

From (a.30), we can determine how the different parameters in the model

affect g. In this case, and assuming that α > β, by totally differentiating

equation (a.30), we can show that ∂Φ̃
∂τ < 0, as long as µ >

1
2 . Thus, the larger

the tax the lower g will be, that is, the lower is the growth rate of the economy

as well as pollution growth. In contrast to the small open economy case, the

growth rate of consumption also decreases, as consumption and capital now

grow at the same rate along the balanced growth path.

In summary, with a tax on pollution affecting symetricallyK andH in sector

1, the steady-state is characterized by a lower growth rate of the economy Φ̃,

associated with a lower Λ, and a lower relative price of good 2 in terms of good
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1, p̃. The decrease in p̃ increases consumption of good 2 relative to consumption

of good 1. Using (a.26) evaluated at the steady-state and combining it with

(a.21) implies that the real rate of return on human capital measured in terms

of the numéraire, r̃H
p̃ , decreases. This means that r̃H decreases more than

proportionally to p̃. Therefore, the relative capital intensity ratio in sector 2,

K2/H2, decreases, as well as K1/H1. This implies that r̃K
p̃ must increase (r̃K

decreases, but less than proportionally to p̃).

Using the constraints of the representative agent’s problem, and the defini-

tions of Y1 and Y2 (71), we obtain

C

K
=
Φ− rK(1−β)

(1−τσ)(α−β) +
h
2Φ

2 − rHrK(1−α)β
(1−τσ)p(β−α)2[Φ− rHα

p(α−β) ]
(1−θ)βrH

(1−τσ)(α−β)p[Φ− rHα

p(α−β) ]
− θ

(a.31)

and

K

H
=

Φ− rHα
p(α−β)

− rK(1−α)p(α−β) −
1−θ
p

C
K

= (a.32)

=
Φ− rHα

p(α−β)

− rK(1−α)p(α−β) −
1−θ
p

⎡⎣Φ− rK(1−β)
(1−τσ)(α−β)+

h
2Φ

2− rHrK(1−α)β
(1−τσ)p(β−α)2[Φ− rHα

p(α−β) ]
(1−θ)βrH

(1−τσ)(α−β)p[Φ− rHα
p(α−β) ]

− θ

⎤⎦
evaluated at the steady-state. Therefore, these ratios are both constant.

The next step will be to study the convergence of the system to the balanced

growth path.
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