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1 Introduction

Introduced by Samuelson (1937) and provided with an axiomatic foundation

by Koopmans (1960) the discount utility (DU) model became the predominant

framework for intertemporal decision analysis. In recent years more and more of

its standard specifications have been challenged into question (for a survey consult

Frederick et al. 2002). One of the disconcertments bears on the generally applied

exponential discount function. Experiments indicate that observed behavior is

better described by the use of hyperbolic (i.e. falling) discount rates (Frederick

et al. 2002:378). Other promoters for hyperbolic discount rates are models based

on reasoning on intergenerational justice such as Chichilnisky (1996) and Li and

Löfgren (2000).

One problem of hyperbolic discounting is that it can lead to continuous revision

of the (formerly) optimal plan, a phenomenon called time inconsistency. One way

to “solve” this problem is to look at the planning process as a non–cooperative

game against one’s future selves or future generations (Phelps and Pollak 1968,

Arrow 1999). Another access to this problem is set forth by Weitzman (1998) and

Azfar (1999) who rationalize hyperbolic discounting in the case of uncertainty.

More recently and in a context closer to my own Gollier (2002) gave sufficient

conditions for hyperbolic discounting in an uncertain world of economic growth.

Last year hyperbolic discounting also obtained official status in the political

process of evaluation when the new British Green Book prescribed hyperbolic

discount rates for the evaluation of long–term projects (HM Treasury 2003:97 et

sqq.).

In his paper “On the ‘Environmental’ Discount Rate” Weitzman (1994) presents

a reasoning how the consideration of environmental amenities being degraded or

being luxury goods can lead to hyperbolic discounting. He sees it as a rigor-

ous foundation for the demand of environmentalists to apply lower and hyper-

bolic discount rates in long–term cost–benefit calculations. The interpretation

of the effect derived by Weitzman as a discount rate is criticized by Arrow et

al. (1995:140). This paper interrelates to the controversy tackling the question

of an environmental discount rate from a slightly different perspective in a quite

different representation.
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Introduction

My model will yield a hyperbolic discount rate based on the assumption of lim-

ited substitutability between produced and environmental goods within a time

consistent framework. I develop a general notation that allows to switch easily be-

tween different perspectives on discounting. Unlike Weitzman I explicitly model

the two–good case and explain why Weitzman’s ‘environmental’ discount rate is

indeed contestable. I show that none the less a meaningful lower and hyperbolic

discount rate for the environment can follow from limited substitutability and

that the rejection of Arrow et al. does not apply in general.

Following this introduction section 2 introduces good–specific discount factors

that equal time propagators of marginal utility generated by good–specific dis-

count rates. It is shown that for the widely used one–commodity DU model such

a generator of marginal utility development coincides with the social discount

rate. I summarize the interpretation of the terms making up the latter.

Section 3 returns to the two–commodity case and focuses on appearing sub-

stitutability effects. The reasoning is discussed in application to the case of an

aggregate of environmental amenities and another aggregate of produced con-

sumption commodities. Assuming that the growth rate of consumption is higher

for produced goods than for environmental goods, I obtain hyperbolic discount

rates for both commodities with the good–specific rate for the environmental

amenities being lower.

In section 4 I introduce prices into the analysis by looking at the optimal

control problem of a representative consumer. Price evolvement over time is

seen to be the product of marginal utility propagation and (inverse) capital value

propagation. It is observed that, if the two goods are not complete substitutes,

there is no canonical discount rate and capital productivity and good–specific

discount rates generally cease to coincide.

Section 5 looks at the evaluation of a small project in a notation that allows to

switch easily between different perspectives on discounting. It is worked out how

good–specific discount rates have to be treated in the process of evaluation and

how the choice of numeraire affects the discount rate. The critique of Arrow et

al. (1995:140) on the environmental discount rate is taken up and reviewed and

social discounting is related to market based evaluation. Section 6 concludes.
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2 Marginal utility and the rate of discount

This section analyzes how marginal utility develops over time and how this relates

to the rate of discount. I study the case of two consumption goods, but the model

is easily extended to the case of N goods. The consumption quantities of the two

goods are labeled x1(t) and x2(t). To simplify notation the time argument will

generally be omitted. With xi : [0, T ] → IR I denote the consumption path for

good i from time t = 0 to t = T , where T = ∞ is allowed. x comprises the

consumption paths of the two goods in vector notation. Welfare is taken to be

that of a representative consumer.1 It is assumed to be of the form

U =

T∫
0

U(x1(t), x2(t), t) dt .(1)

The function U(x1(t), x2(t), t) will be called the (instantaneous) utility function.

It is required to be twice differentiable. The general part of the paper (on good–

specific discount rates and their interpretation) does not assume a specific time

dependence. For a given consumption path x I write Ux(t) ≡ U(x1(t), x2(t), t).

Similar definitions apply to the derivatives of U . Again for notational simplifi-

cation the x will usually be dropped. I define the time propagator of marginal

utility Dx
i (t, t0) for a given consumption path x by

Dx
i (t, t0) ≡

∂U(x1,x2,t)
∂xi

(t)
∂U(x1,x2,t)

∂xi
(t0)

(2)

⇔ ∂U(x1, x2, t)

∂xi

(t) ≡ Dx
i (t, t0)

∂U(x1, x2, t)

∂xi

(t0) , i ∈ {1, 2} .

The time propagator Dx
i (t, t0) captures the time development of marginal utility

by relating the value of marginal utility between any two points of time t and t0

in a multiplicative form. In discrete time Malinvaud (1974:234) calls the Dx
i (t, t0)

discount factors, a wording I will adopt in my continuous time setting. As I look

at a representative consumer I will also call Dx
i (t, t0) a social discount factor.

In what follows it will become clear that Dx
i (t, t0) generally does not coincide

with the factor multiplied to a time independent instantaneous utility function –

1A reader who refuses the meaningfulness of a representative consumer can regard U as being

a given social welfare function that is only formally equivalent to individual utility reasoning.

Only in section 4 and the last equation of section 5 where price paths are introduced this picture

makes the analysis a bit more complicated.
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Marginal utility and the rate of discount

representing pure time preference – which is also called a discount factor.

A closer look at the time dependence of the propagator brings about its corre-

sponding discount rate. For this purpose let me write out the infinitesimal time

propagator of marginal utility as follows:

Dx
i (t + dt, t) =

∂U
∂xi

(t + dt)
∂U
∂xi

(t)
= 1 +

∂U
∂xi

(t + dt)− ∂U
∂xi

(t)
∂U
∂xi

(t)

= 1 +

∂2U
∂t∂xi

(t) + ∂2U
∂x2

i
(t)ẋi + ∂2U

∂xj∂xi
(t)ẋj

∂U
∂xi

(t)︸ ︷︷ ︸
≡ −δi(x(t), ẋ(t), t) ≡ −δi(t)

dt i,j∈{1,2} with i6=j.

The instantaneous2 change of Dx
i is completely characterized by δi(t) ≡

δi(x(t), ẋ(t), t) ≡ −[ ∂2U
∂t∂xi

(t) + ∂2U
∂x2

i
(t)ẋi + ∂2U

∂xj∂xi
(t)ẋj]/

∂U
∂xi

(t) which corresponds

to a discount rate (see below). In mechanics (the negative of) δi(t) is called the

generator of Dx
i as it describes, or – from an active point of view – generates,

the change of Dx
i .3 In the context of this paper δi(t) can be understood as being

the (good–specific) generator of time development of marginal utility. I find it

helpful to keep this picture in mind when talking about time development and

discounting.

The finite time propagator follows from the infinitesimal one as derived in

Appendix A:

Dx
i (t, t0) = e

−
∫ t

t0
δi(x(t′),ẋ(t′),t′)dt′

= e

∫ t

t0

∂2U
∂t′∂xi

(t′)+ ∂2U
∂x2

i

(t′)ẋi+
∂2U

∂xj∂xi
(t′)ẋj

∂U
∂xi

(t′)
dt′

.(3)

Thus the finite time propagators are completely determined by the families

δi(t
′),t′∈[0,T ] , i ∈ {1, 2} (requiring given consumption path x). By checking the

relation δ(t) = − Ḋ(t)
D(t)

(e.g. Laibson 1997:449) with t0 constant, it can be verified

that δi is indeed the instantaneous discount rate corresponding to Dx
i (t, t0). Re-

capitulating, the discount rates δi(t) define or generate the instantaneous changes

of Dx
i which on their part comprise the intertemporal development of welfare. For

the rest of this section I will only be interested in the instantaneous discount rates

2Here by instantaneous is meant that the first and the second argument of Dx
i differ only

infinitesimally.

3Compare Sakurai (1985:46 et sqq.,71 et sq.) or Goldstein (1980:chapter 9) for this view on

mechanics (e.g. momentum being the generator of translation). The minus sign is introduced

to meet the economic perspective of positively discounting instead of negatively “upcounting”.
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δi(t). I will come back to the propagators Dx
i (t, t0) in sections 4 and 5.

In models with a single (aggregate) consumption good δi(t) is known as the

(instantaneous) social rate of time preference or social discount rate. This stands

out more clearly if instantaneous utility is specified to the form usually applied in

discount utility models: U(x1, x2, t) = u(x1, x2)e
−ρt. Let me neglect the second

commodity for the moment by setting it constant.4 Then the discount rate δ ≡ δ1

becomes

δ(t) = ρ−
∂2u
∂x2

1

∂u
∂x1

ẋ1 = ρ−
∂ ∂u

∂x1

∂x1

x1

∂u
∂x1

ẋ1

x1

= ρ + θ(x(t)) x̂1(x1(t),ẋ1(t)) .(4)

This expression for the social discount rate is well known in the literature. For

a detailed discussion of the terms I refer to Arrow et al.(1995:136) or Pearce et

al.(2003:130). The constant ρ is called the pure rate of time preference. θ is the

(absolute5 of the) elasticity of marginal utility of consumption. x̂1 denotes the

growth rate of the consumption commodity.

In many macroeconomic models u is assumed to exhibit constant elasticity of

intertemporal substitution (CIES). This leads to constancy of the term θ x̂1 and

thereby to a constant social discount rate δ in the steady state.6 A constant rate

of discount goes along with exponential discounting, i.e. a discount factor of the

form Dx
i (t, t0) = e−δt (compare equation 3).

In general the terms in equation (4) don’t have to be constant. In fact the

term θ x̂1 is also used to argue for hyperbolic discounting. A discount function

is said to be hyperbolic if it is characterized by a falling instantaneous discount

rate (Laibson 1997:450). Confronted with the question of discounting the long–

term impacts of global warming, it is argued that global warming can result

in a decline of consumption growth and thus diminish the discount rate that

should be applied to the far future. Translating equation (4) to a framework

with uncertainty Gollier (2002) works out further conditions that lead to a falling

discount rate by the term θ x̂1.

4x2 can be regarded as a fixed parameter of the utility function.

5As in the standard DU models diminishing but positive marginal utility in consumption is

assumed −∂2u
∂x2

1
/ ∂u

∂x1
= θ turns out to be positive.

6The elasticity of intertemporal substitution is the inverse of the elasticity of marginal utility

θ. Thus in the steady state x̂1 and θ are both constant (Barro and Sala-i-Martin 1995:64).
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Two goods with limited substitutability

3 Two goods with limited substitutability

Coming back to the model with two consumption goods and U(x1, x2, t) =

u(x1, x2)e
−ρt equation (4) has to be modified. The discount rate corresponding

to the propagator of marginal utility Dx
1 (t, t0) becomes

δ1(t) = ρ−
∂2u
∂x2

1

∂u
∂x1

ẋ1 −
∂2u

∂x1∂x2

∂u
∂x1

ẋ2 .(5)

It comprises an additional term that depends on the substitutability7 ∂2u
∂x1∂x2

be-

tween the two goods. Working out its nature I take instantaneous utility to be

of the functional form u(x1, x2) = [a1u1(x1)
s +a2u2(x2)

s]1/s, s ∈ IR, a1, a2 ∈ IR+.8

This furthers understanding as it separates good–specific utility ui(xi) from sub-

stitutability effects parameterized in a simple form by s. As derived in appendix

B the corresponding discount rate turns out to be

δ1(t) = ρ−
∂2u1

∂x2
1

∂u1

∂x1

ẋ1 − (1− s)
a2u2(x2)

s

a1u1(x1)s + a2u2(x2)s

 ∂u2

∂x2
(x2)

u2(x2)
ẋ2 −

∂u1

∂x1
(x1)

u1(x1)
ẋ1

 .(6)

The first and the second term of equation (6) resemble the widely used equation

(4). In what follows I want to examine the additional third term that depends

on the substitutability parameter s. Having recognized this, I simplify the utility

function by setting u(x1) = x1 and u(x2) = x2 which leads to the standard CES

utility function u(x1, x2) = [a1x
s
1 + a2x

s
2]

1/s.9 Thereby I eliminate in equation

(6) the well studied second term and simplify the third without changing its

dependence on the substitutability parameter s. This step leads to the discount

7See Coto-Millán (1999:21) for different ways of defining substitutability of consumption

goods.

8For s = 0 the ai are restricted to a1 +a2 = 1 and the functional form is defined by the limit

s → 0 leading to u(x1, x2) = u1(x1)a1u2(x2)a2 . For s → −∞,∞ the limit functions are found

to be min{u1(x1), u2(x2)} and max{u1(x1), u2(x2)} respectively.

9CES functions exhibit constant elasticity of substitution σ that relates to s by the formula

σ = 1
1−s . For its derivation see Arrow et al. (1961). Observe that CES functions are homo-

geneous of degree one. Thus proportional overall growth does not change marginal utility as

it follows that the latter is homogeneous of degree zero in consumption. This explains why

the chosen functional form is so well suited to focus on the new effect due to relative differ-

ence in growth, filtering out the overall growth effect extensively discussed in the literature in

connection with equation (4).
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rate:

δ1(t) = ρ− (1− s)
a2x

s
2

a1xs
1 + a2xs

2︸ ︷︷ ︸
≡ Gs(x1, x2)

(x̂2 − x̂1) .(7)

Interpreting this expression I want to specify the two goods. Let the first char-

acterize an aggregate of environmental goods10 and let the second denote an

aggregate of produced goods. It makes the model more viable not to think of x1

as the mere quantity of environmental consumption, but to think of it as some

kind of quality weighted measure of consumption of environmental amenities.11

The same interpretation should hold for the measurement x2 of the produced

good. I assume that the rate of growth in (quality adjusted) consumption of

the produced good x̂2 is higher than that of the environmental good x̂1. This

difference can be due to ecological reasons limiting the growth (and amount) of

environmental consumption stronger than for technically produced consumption

goods or to the problem of the environment being an undersupplied public good.

I have the first interpretation in mind.

It is instructive to look first at the two special cases where s = 1 and s = 0.

The first corresponds to the additive utility function u(x1, x2) = a1x1 + a2x2 and

leads to G1(x1, x2) = 0. Thus in the case of completely substitutable goods the

additional term vanishes and equations (4) and (6) coincide. No further insight

is gained by explicitly modeling two goods.

For s = 0 and a1 + a2 = 1 the utility function takes the Cobb–Douglas form

u(x1, x2) = xa1
1 +xa2

2 (Arrow et al. 1961:231) and it is found that G0(x1, x2) = a2.

Hence the discount rate becomes

δ1(t) = ρ− a2 (x̂2 − x̂1) .(8)

Equation (8) states that the discount rate of the environmental good is reduced

10Environmental goods can be defined by being “generally consumed on site, with little or

no transformation by ordinary productive processes” (Fisher and Krutilla 1975:360).

11Quantity and quality in consumption of environmental goods can develop at different rates.

This makes the simplification of just looking at some aggregate a strong assumption as will

become clear during my analysis of the consequences of differing growth rates for environmental

and produced goods. Though for the sake of comprehensibility it is advisable to focus only on

one such effect and commit to the simplification above.
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Two goods with limited substitutability

by a term proportional to the difference in the growth rates of the two goods.

In a steady state the terms in equation (8) are constant and hence discounting

of the environmental good stays exponential with a lower discount rate for Cobb–

Douglas utility.

Now I turn to the more general case of limited substitutability characterized by

0 < s < 1. I call this parameter range limited substitutability because utility can

be gained by consuming only one of the goods, but still mixtures are preferred.

Gs is positive and hence the additional term in equation (7) again reduces the

discount rate. But this time Gs is constantly decreasing which can be seen by

the following transformation derived in appendix C:

Gs = (1− s)
a2x2(t)

s

a1x1(t)s + a2x2(t)s
= (1− s)

1

a1x1(0)s

a2x2(0)s e
−s
∫ t

0
x̂2(t′)−x̂1(t′) dt′ + 1

.(9)

From x̂2 − x̂1 > 0 it follows that the expression a1x1(0)s

a2x2(0)s e
−s
∫ t

0
x̂2(t′)−x̂1(t′) dt′ is

monotonously falling to zero. Hence the second factor of Gs grows to one12 and

Gs monotonously grows to (1−s). In a steady state thus the discount rate δ1 falls

monotonously to δ1 = ρ− (1− s)(x̂2− x̂1) for t →∞ (assuming T = ∞). There-

with discounting of the environmental good becomes hyperbolic. The discount rate

for the environmental good is lowered by the additional term depending on the

substitutability between x1 and x2. The less substitutable both goods are (i.e.

the smaller s is), the lower becomes the discount rate for the environmental good.

Now I turn to the discount rate of the produced good x2. It is easily arrived

at by switching the indices in equation (7):

δ2(t) = ρ + (1− s)
a1x

s
1

a2xs
2 + a1xs

1︸ ︷︷ ︸
≡ Hs(x1, x2)

(x̂2 − x̂1) ,(10)

where the plus sign in front of the second term is due to interchanging the po-

sitions of x̂2 and x̂1. Hs like Gs is positive and similar to the latter it can be

transformed to:

Hs = (1− s)
1

a2x2(0)s

a1x1(0)s e
s
∫ t

0
x̂2(t′)−x̂1(t′) dt′ + 1

.

Again this can be seen immediately by switching the indices in equation (9). For

12More precisely it must be assumed that there exists ε > 0 such that x̂1(t) < x̂2(t) − ε for

all t to assure that the limit reaches one.
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Cobb–Douglas utility (s = 0, a1 + a2 = 1) the discount rate is again constant

in the steady state, but this time higher by a1(x̂2 − x̂1). In the region of lim-

ited substitutability (0 < s < 1) the term es
∫ t

0
x̂2(t′)−x̂1(t′) dt′ grows monotonously

to infinity and thereby Hs falls to zero. This signifies that in a steady state

also the produced good is discounted hyperbolically with a discount rate falling

monotonously to the pure rate of time preference ρ. The interesting result is

that, if the growth rates of consumption of two goods differ, an exponentially

discounted CES–utility–function in the range of limited substitutability leads to

hyperbolic discounting when either of the two goods is considered individually.

Observe that for the environmental good x1 the discount rate will eventually

grow negative if (1 − s)(x̂2(t) − x̂1(t)) > ρ, that is, if the difference in growth

of consumption between the two goods weighted with the limitedness of substi-

tutability dominates the time preference ρ.13 The meaning of these individual

discount rates will be further discussed in section 5 after introducing prices into

the model in section 4.

4 Connecting marginal utility and prices

Up to now I only studied the objective function of the welfare optimization prob-

lem and treated the optimal consumption path x as given. To introduce prices

into my considerations I take a closer look at the decision problem of the repre-

sentative consumer. This section introduces his restrictions on consumption by

considering his budget constraint. Again the equations of motion for x1 and x2

won’t be modeled explicitly. I use the budget constraint only to introduce prices

which prove helpful in section 5 when the interpretation of discount rates will be

discussed. Welfare is again assumed to be of the general form of equation (1)

though restricted by the assumptions that follow below. For this section I will

assume that the social optimum can be decentralized by an appropriate price

system. Prices are measured in units of capital which can be regarded either as

money or as real capital. They are denoted by p1(t) and p2(t). The interest rate

13Observe that this relation determines only the instantaneous discount rate. It is also possi-

ble that the discount factor, i.e. the finite time propagator Dx
i (t, t0), grows bigger than 1, but

this is up to the special case.
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Connecting marginal utility and prices

on capital is r(t). Remuneration for a fixed offer of labor w(t) is only introduced

for “completeness” of the budget constraint, but will not play any explicit roll in

my further considerations. All these variables are exogenous to the representa-

tive consumer. His choice is between saving k̇(t) units of the capital good k and

consuming the amounts x1(t) and x2(t). Therewith his budget constraint is given

by

k̇(t) = r(t)k(t) + w(t)− p1(t)x1(t)− p2(t)x2(t) .

Thus the Hamiltonian of the representative consumer’s optimization problem is

H = U(x1(t), x2(t), t) + λ(t)[r(t)k(t) + w(t)− p1(t)x1(t)− p2(t)x2(t)] .

For what follows I shall assume that a sufficiency condition for the optimization

problem is met14 and denote the solution for the consumption path by x. Along

this path the following necessary conditions for an optimum must be satisfied:

∂H

∂x1

=
∂U

∂x1

− λ(t)p1(t)
!
= 0 ,(11)

∂H

∂x2

=
∂U

∂x2

− λ(t)p2(t)
!
= 0 ,(12)

∂H

∂k
= λ(t)r(t)

!
= −λ̇(t) .(13)

From equations (11) and (12) I obtain the relations:
∂U
∂x1

(t)
∂U
∂x2

(t)
=

p1(t)

p2(t)
and

∂U
∂xi

(t)
∂U
∂xi

(t0)
=

λ(t)

λ(t0)

pi(t)

pi(t0)
i ∈ {1, 2} .(14)

Integration of equation (13) yields the shadow price of capital

λ(t) = ce−
∫ t

0
r(t)dt with the integration constant λ(0) = c ∈ IR+ .

Let me define the time propagator of capital value R(t, t0) = λ(t)
λ(t0)

= e
−
∫ t

t0
r(t′)dt′

.

It relates the shadow price of capital at different points of time.15 In analogy

to the derivation of Dx
i in section 2 the (negative of the) productivity of capi-

tal r(t) forms the generator of capital value propagation. Inserting R(t, t0) into

14See Takayama (1994:660 sqq.) and Chiang (1992:214 et sqq.) for different sufficiency con-

ditions. In addition I assume a continuos control (consumption) path and an interior solution.

15For the interpretation of a shadow price (costate variable) compare e.g. Kamien and

Schwartz (2000:136 et sqq.).
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equation (14) the following relation between the time propagator of marginal

utility Dx
i (t, t0) of good i, the capital value propagator and the price of good i is

obtained:

pi(t) = Dx
i (t, t0) pi(t0) R(t0, t) .(15)

Equation (15) shows that time development of (capital measured) prices depends

on two influencing factors. One is the effect discussed in sections 2 and 3 de-

pending on the change of marginal utility expressed by Dx
i (t, t0). The other is

generated by the productivity of capital.

Note that it is not the capital value propagator R(t, t0) that appears in equation

(15) but its inverse R(t0, t) = R(t, t0)
−1 = e

∫ t

t0
r(t′)dt′

. This is because prices

are measured in units of the capital good. Thus the capital value propagator

R(t, t0) applies to the denominator. Further observe that (15) is a straight forward

generalization of the two period relation (1 + δ)−1 ≡ ∂U
∂x

(1)/∂U
∂x

(0)
!
= (1 + r)−1 p(1)

p(0)

to continuous time.16

It is important to note that in the optimum, capital productivity r(t) does gen-

erally not equal δi(t). This differs from the single good case the way it is usually

put forward. In the latter it can be argued for measuring capital in units of the

(only) consumption good. This permits to normalize the consumption good and

the capital good at the same time.17 Such a simplification is not feasible anymore

if several consumption goods are considered. This can be seen by deriving the

Euler equation from (13) and (11) – respectively (13) and (12) for the second

good – and solving for r(t). Yet it can be recognized much easier by the fact

that if r(t) = δi(t) for both goods, the different δi would have to coincide. But

in section 3 I showed that this is usually not the case (compare equations 7 and

10).

16Be aware that δ depends on x= (x(0), x(1)).

17Compare e.g. Barro and Sala-i-Martin (1995:62). Note that the important trick is that

the normalization allows to hold the price ratio of capital and consumption good constant over

time, not that prices themselves are actually kept constant. The latter is also done, but this

part of the normalization is echoed in the shadow price of the capital good.
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Discounting and project evaluation

5 Discounting and project evaluation

Now I will relate the discount rates derived in sections 2 and 3 to the task of

evaluation. To this end I consider changes in consumption and write out the

corresponding alterations in welfare using the finite time propagators Dx
i (t, t0)

and R(t, t0) generated by the rates δi(t) and r(t). I consider a small project that

changes the formerly optimal consumption path x0 to the new path x=x0 + ∆x

with xi = x0
i (t)+∆xi(t), i ∈ {1, 2}, t ∈ [0, T ]. At each point of time ∆xi(t) should

be small as compared to xi(t) so that I can develop U(x1(t) + ∆x1(t), x2(t) +

∆x2(t), t) in the ∆xi(t) (small project assumption). Hence the welfare of the new

consumption path can be written as

U =

T∫
0

U(x0
1(t) + ∆x1(t), x

0
2(t) + ∆x2(t), t) dt

=

T∫
0

U(x0
1(t), x

0
2(t), t) +

∂U

∂x1

(t)∆x1(t) +
∂U

∂x2

(t)∆x2(t) + O(∆x(t)2) dt

= U 0 +

T∫
0

∂U

∂x1

(t)∆x1(t) +
∂U

∂x2

(t)∆x2(t) + O(∆x(t)2) dt ,(16)

where the marginal utilities are evaluated along x0. Equation (16) states that

neglecting terms of second order in ∆x, the project raises welfare if and only if
T∫

0

∂U

∂x1

(t)∆x1(t) +
∂U

∂x2

(t)∆x2(t) dt > 0 .(17)

The integral can be considered a cost benefit functional in continuous time with

valuation derived from a social welfare optimization. Time specific marginal

utilities are used to evaluate the changes in x1 and x2 at every point of time. By

relating the marginal utilities in equation (17) at different points of time with the

help of equation (2) one is taken to the picture of social discounting (equations

18 to 19’ below). Before I do this let me choose the reference period t0 ≡ 0 to

be the present and assume that in the present there exist prices p1(t0) and p2(t0)

fulfilling p1(t0)
p2(t0)

=
∂U
∂x1

(t0)

∂U
∂x2

(t0)
.18 These could either be market prices or prices derived

from direct methods (e.g. contingent valuation) or indirect methods (e.g. hedonic

18For social evaluation of the project I do not assume that the assumptions of section 4 hold,

especially I do not presume a given price path. The results of section 4 will only be used when

looking at market based evaluation in equation (20).
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price studies) of evaluation (compare Hanley et al. 1997:383 et sqq.). Together

with equation (2) this relation brings the evaluation functional (17) to the form:

T∫
0

Dx0

1 (t, t0)p1(t0)∆x1(t) + Dx0

2 (t, t0)p2(t0)∆x2(t) dt > 0 .(18)

By factoring out Dx0

1 (t, t0) or Dx0

2 (t, t0) this is equivalent to

T∫
0

p1(t0)∆x1(t) +
Dx0

2 (t, t0)

Dx0

1 (t, t0)
p2(t0)∆x2(t)

Dx0

1 (t, t0) dt > 0 and(19)

T∫
0

Dx0

1 (t, t0)

Dx0

2 (t, t0)
p1(t0)∆x1(t) + p2(t0)∆x2(t)

Dx0

2 (t, t0) dt > 0 .(19’)

Equation (18) takes the present prices to determine the relative value of x1 and x2

at time t0 = 0 and then propagates both prices using the change of marginal utility

over time for the respective good.19 Another interpretation is to take the Dx
i (t, t0)

as good–specific discount factors. Applying this view to the example of section 3

with limited substitutability between produced and environmental goods it would

ask to take a higher and falling discount rate for the aggregate produced good and

a lower and falling discount rate for the environmental good. It is important to

be aware that either one can argue that prices of the environmental good rise

due to its increasing relative scarcity, or one can apply the individual discount

rates discussed above. Doing both at the same time yields a wrong evaluation.

An interesting special case is the evaluation of a project that affects only con-

sumption of the environmental good at different points of time (∆x2 = 0). Then

(18) is equivalent to

T∫
0

Dx0

1 (t, t0)∆x1(t) dt > 0 .(18’)

Hence looking at a partial model of the environmental sector optimal discounting

can be hyperbolic and time consistent at the same time. Time consistency follows,

because looking at both sectors, instantaneous utility is discounted exponentially.

But the change in optimal consumption of the produced good over time changes

marginal utility derived from the environmental good in such a way that in the

19Note that these prices [Dx
i (t, t0) pi(t0)] are not the same as the capital measured market

prices in section 4 (compare equations 15 and 20). Dx
i (t, t0) pi(t0) could be called a social price

as it determines whether a change in consumption flow raises welfare.

13



Discounting and project evaluation

partial model of the environmental sector (only) hyperbolic discount functions

lead to time consistent planning.

Equations (19) and (19’) take the more usual view, that there is one common

discount rate applicable to all goods (the discount rate). Equation (19) can

be interpreted the following way. Again evaluation starts out with the prices in

t0 = 0. Then the first good is taken to be the numeraire (in the sense of keeping its

price constant). Hence the change of marginal utility of the first good expressed

by Dx0

1 (t, t0) becomes the discount factor and the (contemporaneous) value of the

second good must be propagated by the relative change of marginal utility of good

two relative to good one, i.e. by
Dx0

2 (t,t0)

Dx0

1 (t,t0)
. Applying this perspective again to the

example of section 3 the social rate of discount for the environmental good would

be the discount rate and discounting would take place with the lower hyperbolic

discount rate δ1.

Equation (19’) is the analogue taking x2 to be the numeraire. Related to the

case of a produced20 consumption good and an environmental good this is the

perspective that Arrow et al. (1995) take21 and which is probably prevailing in

cost–benefit analysis. Despite the fact that they stress being aware that “relative

prices over time (discount factors) will differ from those associated with the con-

sumption good measure” (Arrow et al. 1995:135) when a different numeraire is

taken, they criticize environmental economists who ask for a lower or hyperbolic

discount rate of environmental goods (Arrow et al. 1995:140). They argue that

value propagation of environmental goods is only a question of price propagation

or of properly turning environmental amenities into equivalents of produced con-

sumption flow and that this “does not change the discount rate to apply to the

consumption stream”(Arrow et al. 1995:140).

I want to make two comments on this. First it is only a matter of perspective

which numeraire is taken and if environmental economists dealing primarily with

environmental consumption goods prefer to take the perspective of equation (18’)

20I suppose that Arrow et al. mean produced consumption goods when they discuss discount-

ing of consumption goods versus environmental goods (compare also footnote 10).

21Compare Arrow et al. (1995:139):”The appropriate procedure entails converting the envi-

ronmental change into equivalent contemporaneous [produced] consumption benefits and dis-

counting those.”
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or (19), then the lower and hyperbolic rate δ1 becomes the discount rate. More

interestingly however is the fact that, even in the picture of taking produced

consumption to be the numeraire, the limitedness of substitutability between

environmental and produced goods does change the discount rate δ2 to be applied

to the consumption stream and turns it hyperbolic (equation 10). This is an effect

that Arrow et al. (1995:140) explicitly deny in response to the model of Weitzman

(1994).

In fact derivation and interpretation of Weitzman’s environmental discount rate

are a little cumbersome as he uses a one–sector model and omits to model the

environmental good explicitly. The latter is brought into the model only in form

of expenditures on environmental amenities that reduce the consumable amount

of the produced good. Now Weitzman assumes that the ratio of produced goods

spent on the environment grows in income.22 This way the “consumable part” of

additionally produced commodities decreases with growth over time. Weitzman

deducts the part of produced consumption that is not consumable from a constant

prior discount rate. That way he obtains a new, lower and – by assumption on

the functional form of expenditure growth – falling discount rate that he calls an

‘environmental’ discount rate.

The difficulty with this discount rate is on the one hand that subtraction of

environmental expenditure from the prior discount rate happens in a rather ad

hoc way and on the other hand that it is not clear what this overall discount rate

finally means.

Now section 3 explicitly models the effects that were touched in Weitzman

(1994) and in fact can lead to a modified discount rate.23 My presentation should

22Weitzman offers two different intuitions for this assumption. One is that with growing pro-

duction also environmental degradation rises and the expenditures needed to keep a constant

level of environmental amenities grow. The alternative interpretation he offers is that envi-

ronmental amenities are luxury goods and therefore expenditure for them rises with growing

(production based) income.

23Weitzman’s first interpretation of expenditure growth – i.e. rising costs for keeping a con-

stant level of environmental amenities with growing production (compare footnote 22) – implies

the assumption that there is a rise of (marginal) valuation of environmental amenities relative

to produced goods. Thus in the sense of section 3 there is limited substitutability and higher

growth of produced consumption. This in fact leads to hyperbolic discount rates (though taking
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Discounting and project evaluation

clarify where these effects come from – i.e. shift in (marginal) valuation – and

how they have to be interpreted and applied in the case of project evaluation.

The substitutability effect derived in section 3 causes the discount rate of the

numeraire to depend directly on changes of other forms of consumption and can

turn the discount rate hyperbolic. This is an effect that is not captured by mere

conversion of the other consumption forms into numeraire equivalents as claimed

by Arrow et al. (1995:140).

Before I turn to market based project evaluation I want to point out the main

advantage of the perspective of social discounting (equations 18 to 19’) as com-

pared to evaluation functional (17). While in (17) marginal utilities have to be

evaluated – or in real life estimated – at every point of time the perspective of so-

cial discounting bundles this problem in two tasks. First the relative value in the

present is estimated and then a functional form for the change of value over time

– depending on growth and substitutability of goods – is to be retrieved. Using

social discount rates – the generators of the discount factors prescribing marginal

utility development – is a perspective especially well suited for the evaluation or

estimation of value change over time as economists usually prefer to think in rates

and elasticities rather than in absolute values and as it translates multiplicative

effects into additive ones. Therefore I perceive a discussion on social discount

rates a perspective comparatively well suited for a (highly normative) discourse

on societies value shift in the future.

Finally I want to consider the case where markets are complete in the sense that

all externalities are reflected in market prices and future markets for all relevant

goods exist. This is the case considered in section 4. Applying equation (15) to

equation (18) the following evaluation functional for the project is obtained:

T∫
0

p1(t)R(t, t0)∆x1(t) + p2(t)R(t, t0)∆x2(t) dt > 0

produced consumption as numeraire rather with a higher and not with a lower discount rate!).

The luxury good effect offered by Weitzman as an alternative interpretation for growing envi-

ronmental expenditures can be seen as a combination of limited substitutability with income

dependent “expenditure weights” a1 and a2 and could thus be modeled similar to my “simple”

substitutability effect in section 3.
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⇔
T∫

0

[p1(t)∆x1(t) + p2(t)∆x2(t)] R(t, t0) dt > 0 .(20)

This time the social discount factor Dx
i (t, t0) is not needed for evaluation. The

price development accounts already for the change in welfare. But as prices are

measured in capital and therefore are also influenced by capital productivity. The

capital value propagator R(t, t0) has to correct for this (compare equation 15).24

Hence capital productivity can be regarded as the common discount rate for both

goods.

6 Conclusion

To evaluate long–term projects not only relative valuation of different consump-

tion flows in the present is needed but also its development over time. The latter

can be represented by social discount factors that describe the time development

of marginal utility. In the case of working future markets these social discount

factors are reflected in the price paths. Taking these prices to evaluate a small

project, the discount rate to be applied is capital productivity.

However, having to decide in the absence of future price paths, which is the

case for environmental goods, the marginal utility development itself has to be

used to evaluate the project. As the corresponding social discount factors are

good–specific one can either use individual social discount rates or choose a nu-

meraire. In the latter case other consumption streams have to be converted into

contemporaneous equivalents of the numeraire. A canonical discount rate does

not exist. Not only the magnitude but also the form of discounting depends on

the choice of the numeraire and its substitutability to other goods.

In the case that environmental and produced goods are of limited substitutabil-

ity and grow at different rates, either of them acquires a hyperbolic discount rate.

The slower growing environmental good yields a lower discount rate. This insight

is also important for partial analysis. If a partial model only considers utility

24Again it is actually the inverse of the capital value propagator that is applied in the de-

nominator. It is helpful to look at equation (20) the way it appears if the capital price would

not be normalized:
T∫
0

p1(t)
R(t0,t)pk(t)∆x1(t) + p2(t)

R(t0,t)pk(t)∆x2(t) dt > 0 . In this form it stands out

more clearly, that the capital value propagator actually acts on the numeraire pk.
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Appendix

derived from environmental goods at different points of time then hyperbolic

discounting might yield the only time consistent plan.

I hope that my presentation and its interpretation in terms of propagators that

can be related to discounting or to price development and to individual goods or

to a numeraire proves helpful in other contexts as well.

Appendix

A Derivation of the finite time propagator of

marginal utility

Using the mutltiplicative structure of the propagator the derivation of Dx
i (t, t0)

from Dx
i (t + dt, t) is straightforward:

Dx
i (t + dt, t0) =

∂U
∂xi

(t + dt)
∂U
∂xi

(t0)
=

∂U
∂xi

(t + dt)
∂U
∂xi

(t)

∂U
∂xi

(t)
∂U
∂xi

(t0)

= Dx
i (t + dt, t)Dx

i (t, t0)

⇒ Dx
i (t + dt, t0)−Dx

i (t, t0) = (Dx
i (t + dt, t)− 1)︸ ︷︷ ︸

‖

Dx
i (t, t0)

=
︷ ︸︸ ︷
−δi(x(t), ẋ(t), t) dt Dx

i (t, t0)

⇒ Dx
i (t + dt, t0)−Dx

i (t, t0)

dt
= −δi(x(t), ẋ(t), t) Dx

i (t, t0)

⇒ d

dt
Dx

i (t, t0) = −δi(x(t), ẋ(t), t) Dx
i (t, t0)

⇒ d

dt
ln Dx

i (t, t0) = −δi(x(t), ẋ(t), t)

⇒ Dx
i (t, t0) = a e

∫ t

t0
−δi(x(t′),ẋ(t′),t′) dt′

.

Because of Dx
i (t, t) = 1 the integration constant a must be equal to 1.
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B Calculation of the discount rate for

U(x1, x2, t) = [a1u1(x1)
s + a2u2(x2)

s]1/se−ρt

The derivatives needed for the computation of δ1 are for s 6= 0, 1:

∂U

∂x1

= a1u1(x1)
s−1u′1(x1)[a1u1(x1)

s + a2u2(x2)
s]

1
s
−1e−ρt ,

∂2U

∂x2
1

=
(
a1u1(x1)

s−1u′′1(x1)− (1− s)a1u1(x1)
s−2u′1(x1)

2
)

[a1u1(x1)
s + a2u2(x2)

s]
1
s
−1

· e−ρt + (1− s)(a1u1(x1)
s−1)2u′1(x1)

2[a1u1(x1)
s + a2u2(x2)

s]
1
s
−2e−ρt and

∂2U

∂x1∂x2

= (1− s) (a1u1(x1)a2u2(x2))
s−1 u′1(x1)u

′
2(x2)[a1u1(x1)

s + a2u2(x2)
s]

1
s
−2e−ρt .

Inserting these into equation (5) yields:

δ1(t) = ρ− (a1u1(x1)
s−1u′′1(x1)− (1− s)a1u1(x1)

s−2u′1(x1)
2) [a1u1(x1)

s + a2u2(x2)
s]

1
s
−1

a1u1(x1)s−1u′1(x1)[a1u1(x1)s + a2u2(x2)s]
1
s
−1

· ẋ1 −
(1− s)(a1u1(x1)

s−1)2u′1(x1)
2[a1u1(x1)

s + a2u2(x2)
s]

1
s
−2

a1u1(x1)s−1u′1(x1)[a1u1(x1)s + a2u2(x2)s]
1
s
−1

ẋ1

−(1− s) (a1u1(x1)a2u2(x2))
s−1 u′1(x1)u

′
2(x2)[a1u1(x1)

s + a2u2(x2)
s]

1
s
−2

a1u1(x1)s−1u′1(x1)[a1u1(x1)s + a2u2(x2)s]
1
s
−1

ẋ2

= ρ− u′′1(x1)

u′1(x1)
ẋ1 + (1− s)u1(x1)

−1u′1(x1) ẋ1

−(1− s)
a1u1(x1)

s−1u′1(x1)

a1u1(x1)s + a2u2(x2)s
ẋ1 − (1− s)

a2u2(x2)
s−1u′2(x2)

a1u1(x1)s + a2u2(x2)s
ẋ2

= ρ− u′′1(x1)

u′1(x1)
ẋ1

+(1− s)
u1(x1)

−1u′1(x1)(a1u1(x1)
s + a2u2(x2)

s)− a1u1(x1)
s−1u′1(x1)

a1u1(x1)s + a2u2(x2)s
ẋ1

−(1− s)
a2u2(x2)

s−1u′2(x2)

a1u1(x1)s + a2u2(x2)s
ẋ2

= ρ− u′′1(x1)

u′1(x1)
ẋ1 + (1− s)

a2u2(x2)
s

a1u1(x1)s + a2u2(x2)s

u′1(x1)

u1(x1)
ẋ1

−(1− s)
a2u2(x2)

s

a1u1(x1)s + a2u2(x2)s

u′2(x2)

u2(x2)
ẋ2 .

Which brings about equation (6):

δ1(t) = ρ− u′′1(x1)

u′1(x1)
ẋ1 − (1− s)

a2u2(x2)
s

a1u1(x1)s + a2u2(x2)s

(
u′2(x2)

a2u2(x2)
ẋ2 −

u′1(x1)

a1u1(x1)
ẋ1

)
.
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Using the functional form given in footnote 8 for s = 0 it is an easy calculation

to show that this relation also holds for s = 0 and s = 1.

C Transformation of Gs

First recognize that the following relation holds (similar to that derived in ap-

pendix A):

d ln xi(t)

dt
=

ẋi(t)

xi(t)

⇒ d ln xi(t) dt = x̂i(t) dt

⇒ ln xi(t) =
∫ t

0
x̂i(t

′) dt′ + c

⇒ xi(t) = xi(0)e
∫ t

0
x̂i(t

′) dt′

⇒ xi(t)
s = xi(0)ses

∫ t

0
x̂i(t

′) dt′ .

Therewith Gs/(1− s) can be transformed the following way:

Gs

1− s
=

a2x2(t)
s

a1x1(t)s + a2x2(t)s
=

a2x2(0)
ses
∫ t

0
x̂2(t′) dt′

a1x1(0)ses
∫ t

0
x̂1(t′) dt′ + a2x2(0)ses

∫ t

0
x̂2(t′) dt′

=
1

a1x1(0)s

a2x2(0)s
e
s
∫ t

0
x̂1(t′) dt′

e
s
∫ t

0
x̂2(t′) dt′

+ 1

=
1

a1x1(0)s

a2x2(0)s e
−s
∫ t

0
x̂2(t′)−x̂1(t′) dt′ + 1

.
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