
 

Multiple Nutrient Stocks and Sustainable Agriculture 
 
 

CRAIG A. BOND* 
Department of Agricultural and Resource Economics 

University of California, Davis 
Davis, CA 95616 

bond@primal.ucdavis.edu 
 

Y. Hossein Farzin* 
Department of Agricultural and Resource Economics 

University of California, Davis 
Davis, CA 95616 

farzin@primal.ucdavis.edu 
 
 
 

Abstract 
 

 This paper develops a basic dynamic economic model that can be used for 
theoretical and numerical analysis of optimal soil management practices. A 
dynamic biophysical/economic optimal control model is developed in a multi-
disciplinary framework, treating soil as a multi-pool portfolio of a particular 
limiting mobile nutrient (e.g. nitrogen). This specification allows for fertilizer to 
directly enter the active pool, while tillage initially affects the decadal pool, 
reflecting the realities of agricultural production. We examine the properties of 
the steady-state and the time paths of the optimal solutions, as well as exploring 
relevant comparative statics for the stationary point. In addition, alternative 
sustainability criteria of farm-level agricultural practices are presented, and the 
optimal solution of the problem is evaluated to determine if it meets any or all of 
the definitions of sustainability. 
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Multiple Nutrient Stocks and Sustainable Agriculture 

 

1. Introduction 

 Concerns over the degradation of agricultural land and externalities associated with 

agricultural production have recently lead to studies of so-called “sustainable agriculture”, 

especially in the fields of agronomy and soil science. Usually utilizing replicated field trials and 

researcher-selected management practices, these studies have examined biological and chemical 

responses to alternative management regimes, including low inorganic input farming, cover 

cropping, and disparate tillage practices. While certainly instructive from a biogeochemical 

standpoint, there is a need to incorporate these ideas into an economic model of agent behavior 

in order to analyze, and in some cases predict, the behavior of individual growers when faced 

with a set of economic incentives. 

 Many economic models have been developed to analyze optimal soil management 

strategies, beginning with those of McConnell (1983) and Barrett (1991). These models 

recognized that the problem of optimal soil management was dynamic in nature, and used 

optimal control theory in order to analyze optimal behavior. Extensions to the basic dynamic 

model appearing in the literature include a more realistic representation of specific biophysical 

processes (Seppelt 1999), inclusion of multi-period investment variables to account for capital 

stocks (Grepperud 1997), and explicit modeling of the choices through which the farmer 

optimizes his profits through indirect manipulation of the stock of the soil natural resource, 

including input utilization (LaFrance 1992; Barrett 1991; Krautkraemer 1994; Brekke, et. al 

1999; Hoag 1998)  and choice of cropping system (Goetz 1997). 

 To date, however, these models have included relatively simple representations of soil 

quality via a single state index representing productivity, essentially ignoring the nutrient cycles 

now generally accepted and utilized in agronomic simulation modeling (see Baisden and 

Amundson 2003 for details). As the sustainable agriculture movement seeks to find management 

practices that can be used to affect these cycles, a multiple pool structure of nutrient availability 

is an imperative. In fact, a more realistic biogeochemical representation of the nutrient cycling 

process has important implications for the qualitative characterization of the optimal fertilization 

path and total nitrogen stocks. Few if any analytical dynamic economic optimization models 
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have been constructed that have this capability, and even fewer have examined optimal behavior 

under different sustainability paradigms (one notable exception is Richter and Seppelt 1996). 

  As such, this paper provides a basic model that can be used for theoretical and numerical 

analysis of the sustainability rules of farm-level agricultural practices under alternative 

definitions of the concept, including the Rawlsian notion of a constant aggregate consumption 

(or utility) level known as the “maximin” criterion and the “wealth-constant” criterion put forth 

by Hicks in 1939 (Hartwick 1977; Solow 1986; Farzin 2002; Farzin 2004). A dynamic 

biophysical/economic optimal control model is developed in a multi-disciplinary framework, 

treating soil as a multi-pool portfolio of a particular limiting mobile nutrient (e.g. nitrogen). This 

specification allows for fertilizer to directly enter the active pool, while tillage initially affects 

the decadal pool, reflecting the realities of agricultural production. We examine the properties of 

the steady-state, as well as exploring relevant comparative statics for the stationary point. Several 

sustainability criteria are proposed, and the optimal paths are evaluated in the context of each 

definition. For simplicity, we restrict attention to interior solutions, essentially ruling out cases 

where initial nutrient stock levels are high relative to their respective steady state values. Upper 

bounds on fertilization, through regulation or leaching, is also assumed away for simplicity; as 

such, any generalizations to the results should be made with caution. 

 This paper is organized as follows. Section 2 describes and analyzes the general 

utilitarian model, including a characterization in both mathematical and graphical terms of the 

optimal solution to the problem. Section 3 develops several alternative sustainability criteria in 

the context of the general model, and determines if the optimal solution satisfies the particular 

definition under consideration. Section 4 discusses the comparative statics of the steady state of 

the system with respect to the relevant economic parameters of the problem, such as output price, 

input cost, the discount rate, and the technological parameters on the yield function. Section 5 

concludes. 

2. The General Model: An Economic Biogeochemical Representation 

2.1 A Model of Nutrient Cycling 

 Our general model is an adaptation of the long-term terrestrial-ecosystem 

biogeochemistry model presented in Baisden and Amundson (2003), referred to here as the BA 

model. The BA model is a relatively simple analytical representation of the structure of popular 

(and considerably more complex) dynamic simulation models, such as Century and EPIC, that 
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account for the interaction between plants and soil carbon and/or nutrient flows between storage 

compartments. Assuming three pools of a yield-limiting nutrient (nitrogen) and one pool of both 

above- and below-ground plant biomass1, the model can be written as the following system of 

differential equations: 

 ,
d

dt
=N JN + B  (1) 

where N is a 4x1 vector of nutrient pools, J is the 4x4 matrix of transfer coefficients that 

describes movement between the pools, and B denotes the vector of exogenous nutrient inputs or 

outputs of the system. The first row of N represents storage of nitrogen in plant biomass, while 

the last three rows correspond to pools of nitrogen that turn over on an approximate annual, 

decadal, and millennial scale. We detail our adaptation of this general model below; for more 

information on the BA model and how it is estimated, see Baisden and Amundson (2003), and 

Baisden, et al. (2002a, 2002b). 

 In order to embody the appropriate biogeochemical structure in an analytical economic 

optimization framework suitable for our analysis, we explicitly represent the evolution of two 

storage compartments, or stocks, of nitrogen in a manner almost identical to rows two and three 

of (1). Before turning to the full specification, however, it is instructive to trace through the 

conceptual framework of the model, beginning with the exogenous entry of a unit (kg/ha/yr) of 

nitrogen into the system via atmospheric deposition, denoted by γ. This unit first enters the 

“active” nitrogen pool N1, so called because it turns over (i.e., gets released into other portions of 

the model) approximately every year. Denote the parameter that governs this turnover by k1≈1, 

so that k1γ of the initial deposition leaves this pool within a year. Of this k1γ, a fraction ρ2 (.08 < ρ2 < .36 in the BA model) enters the decadal pool of nitrogen, denoted N2, another fraction ρ3 

(.001 < ρ3 < .007) enters the millennial pool, and the remainder (1- ρ2 - ρ3) enters the available 

supply of nitrogen to any potential vegetation. More generally, the entire pre-existing stock of N1 

turns over at the same rate k1, and follows the same pathways, with the majority entering the 

available supply every year. The second stock N2 turns over as well, with k2 (.02 < k2 <.08) of the 

existing decadal stock released to the available supply every year through natural decomposition 

processes. The release from this pool can be accelerated through tillage practices, denoted 

1 21 ( / )T k k≤ < , so that the fraction of total release from the decadal pool is k2T for a given 

tillage regime. Because the millennial pool essentially does not turn over under most scenarios, 
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the dynamics of the millennial pool are not explicitly modeled, and as such ρ3k1N1 is exported 

directly from the active pool each year. 

 As alluded to above, nitrogen in plant biomass is not directly modeled as a stock, but 

rather the nitrogen available to any vegetation is calculated as a flow measure. This supply, 

denoted Na, consists of a linear combination of the explicitly represented state variables N1 and 

N2, taking into account exports via leaching, erosion, denitrification, etc… and additional supply 

sources such as fertilizer and the input from the exogenous millennial pool. Specifically, define 

 [ ]2 3 1 1 2 2 3( ) (1 ) (1 ) ( ) ( ) ( )a atmN t k N t k TN t F tη ρ ρ γ γ= − − − + + +  (2) 

where η represents the export rate out of the system via the above processes, γ3 denotes inputs 

from the excluded pool, F(t) characterizes fertilizer inputs as a multiplicative factor of the natural 

rate of atmospheric deposition γatm, and all other variables are as defined above. Note that 

fertilization is subject to the same export rate as the other sources of nitrogen, and that fertilizer 

is a perfect substitute for indigenous nitrogen.2 

 Finally, in order to complete the nitrogen cycle, the return of any plant biomass and/or 

unused nitrogen from the available supply to the active pool is represented. Following the BA 

model, denote a harvest index H, 0 ≤ H ≤ 1, to represent the proportion of available supply, in 

nutrient units, extracted through harvest of crop material, implying (1 )(1 ) aH Nη− − is returned to 

the active pool each year. If, for example, the land is left fallow, H=0. If a crop or sequence of 

crops is cultivated, then H is specific to the biological realities of the crop and its nutrient use 

efficiency. Baisden and Amundson (2003) assume that .2 ≤ H ≤.5 in explaining the effect of 

agriculture on the natural system. With these assumptions, the dynamics of the nitrogen cycle 

can generally be represented as 

 [ ] [ ]1 2 3 1 1 2 2 3(1 )(1 )(1 ) 1 (1 )(1 ) ( )atm atmN H k N H k TN Fη ρ ρ η γ γ γ= − − − − − + − − + + +ɺ  (3) 

 2 2 1 1 2 2N k N k TNρ= −ɺ  (4) 

  
which, when taken with (2), essentially corresponds to the first three rows of the BA model 

presented in (1). We thus have a system of two simple linear differential equations that generally 

define the movement of a limiting nutrient through the biogeochemical process. A schematic 

representation of the nutrient cycle is presented in Figure 1. 

2.2 A Model of Economic Behavior 
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 One of the primary contributions of this paper is to integrate this general analytical 

description of nutrient cycling, which is at the core of many agricultural simulation models, with 

the traditional behavioral assumptions of economics. In particular, we assume a sole agent who 

owns a normalized unit of land which admits a nitrogen cycle described by equations (2) - (4). 

This (risk-neutral) agent seeks to maximize the stream of his profits over an infinite time horizon 

by cultivating a crop or sequence of crops with given harvest index H and associated tillage 

system T, with fertilizer application as a choice variable. In more formal terms, the agent solves 

the problem (suppressing t as an argument for available nitrogen and fertilizer) 

 [ ]
0

0

max ( ; , ) rt
a

F
pY N H T cF e dt

∞
−

≥
−∫  (5) 

subject to (2) - (4), and the initial conditions and non-negativity constraints given by 

1 10 2 20 1 2(0) 0, (0) 0, ( ) 0, and ( ) 0.N N N N N t N t= > = > ≥ ≥  We define p as the relative price of 

one unit of yield, defined by the production function Y(Na), while c is the relative price of 

fertilizer in the appropriate units. We assume that H and T exogenously and jointly determine the 

structure of Y(Na; H,T), and Y'(Na)>0, Y''(Na)<0, and Y(0)=0. 

 Several points regarding these assumptions and the structure of the model are worth 

mentioning. First, this specification can be described as a hybrid between a traditional renewable 

resource problem and a traditional investment problem, both in a dynamic setting. From the point 

of view of a renewable resource problem, harvest H depletes a natural resource stock N = N1 + 

N2 which evolves naturally over time and in the absence of anthropogenic activity, tends towards 

a steady-state. In the model described in this paper, however, the conventional “effort” (as 

measured by the harvest index H) is not a choice variable, nor does one directly consume and 

accrue benefits from exploitation of the resource. Rather, H is determined through crop choice, 

and one can view the choice of the tandem H and T (and thus the associated yield function) as 

occurring prior to fertilization choice, and fixed throughout the time horizon. This is obviously a 

gross simplification, especially with regard to the fixed nature of these choices over time, and 

can be relaxed (see Bond 2004), but we restrict attention here to the specification in (5) for 

simplicity. Viewing the problem as an investment problem, the agent purchases stock-

augmenting flows (i.e., investment) in each time period, which in turn add to stock levels 

subsequently used in the production process. In this sense, we capture the indirect nature of the 

relationship between the state variables and the welfare function. Note that unlike some firm 
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investment models, there are irreversibilities in investment, in that one can only augment, rather 

than deplete, the nutrient stocks through direct manipulation of the control. In other words, we 

are constraining F(t) to be positive over the planning horizon, and there is can be no 

“disinvestment” in nutrient stocks available due to the prohibitive costs of doing so. A value of 

F(t)=0 with a harvest index greater than zero implies cultivation without any fertilization. 

 Second, we have assumed constant relative prices over the time horizon. While this may 

be troublesome if the model were extended over a larger geographic area, thus introducing 

endogeneity into price determination, we argue that the single price-taking agent specification 

minimizes any potential errors given the necessary analytical simplifications. Of course, different 

expectations over future prices can (and most likely will) alter the optimal investment strategies. 

Lastly, we have specified an infinite terminal time, largely as a result of the fact that the problem 

makes economic sense only if a steady-state solution to the problem exists.  

 We now turn to the necessary and sufficient conditions that must be satisfied for a 

solution to (2) - (5) and the initial and terminal conditions. Define the current-value Hamiltonian 

as 

 

( )
[ ]
[ ]

1
1 2 1 2 1 2

1 11 1 12 2 3

2 21 1 22 2

( , , , , ; , ) ( , , ); ,

(1 )(1 )( )

a

atm atm

H F N N H T pY N N N F H T cF

a N a N H F

a N a N

λ λ
λ η γ γ γ
λ

= −

+ + + − − + +

+ +

 (6) 

where λ1 and λ2 are the current-value costate variables of N1 and N2, respectively, reflecting the 

shadow values of the two stocks, and the aij ’s (i,j=1,2) are the coefficients on N1 and N2 in (3) 

and (4).3 Defining the Lagrangian as  

 1
1 2 1 2 1 2 1 2( , , , , , ; , ) ( , , , , ; , )L F N N H T H F N N H T Fλ λ µ λ λ µ= +  (7) 

where µ is the shadow value associated with the non-negativity constraint on F, Theorem 36.3 of 

Caputo (2004) gives the necessary conditions for an optimal solution: 

 [ ]1(1 ) ( ) (1 ) 0;  0,  0,   0F a atm atmL pY N H c F Fη γ λ γ µ µ µ′= − + − − + = ≥ ≥ =  (8) 

 ( ) 11 1
1 11 1 21 2

( )
( )

(1 )a

a k
r a pY N a

H
λ λ λ+′= − − −

−
ɺ  (9) 

 12
2 22 2 12 1( ) ( )

(1 )a

a
r a pY N a

H
λ λ λ′= − − −

−
ɺ  (10) 

 [ ] [ ]1 2 3 1 1 2 2 3(1 )(1 )(1 ) 1 (1 )(1 ) ( )atm atmN H k N H k TN Fη ρ ρ η γ γ γ= − − − − − + − − + + +ɺ  (11) 
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 2 2 1 1 2 2N k N k TNρ= −ɺ  (12) 

 lim  0,  1,2.i
t

N i
→∞

≥ =  (13) 

 

We will restrict attention in this paper to the case of an interior solution; i.e., µ=0, although it 

should be noted that there are some interesting cases when the non-negativity constraint binds at 

some point over the planning horizon (see Appendix A for conditions that guarantee an interior 

solution, and Bond (2004) for further details). As such, the optimal solution will lead to a steady 

state. Sufficiency conditions are satisfied as well, as Theorem 36.4 of Caputo (2004) can be used 

because for any admissible control F and associated state path Nj, L is concave in (F, N1, N2), and 

2
*

1

lim  0,j j j
t

j

N Nλ
→∞

=

 − ≤ ∑  where *
jN  is the optimal state path associated with any optimal control 

*F  that satisfies (8)-(13). Thus, any solution to the necessary conditions is an optimal control, 

although this theorem does not guarantee uniqueness. 

 Interpretation of the necessary conditions is relatively straightforward. Equation (8) states 

that the marginal value generated by application of a unit of fertilizer, in terms of both immediate 

benefits through crop growth and harvesting and indirect benefits through the unused portion 

returned to the nitrogen system, must equal the marginal cost of fertilizer at each moment in 

time. Equations (11) and (12) just restate the structure of the system, and (13) is the 

transversality condition that ensures non-negativity of the nitrogen stocks. From (9) and (10), 

each costate variable (or the shadow price associated with each pool of nitrogen), must grow at 

the rate of discount less the marginal value lost (gained) in each pool through export (import) of 

both harvesting and natural processes. Because fertilizer and indigenous nutrients are perfect 

substitutes, we are assuming an interior solution, and there is no upper bound on fertilizer use, 

the reader might already suspect that the costate variables are constant over time, a result we will 

confirm for a special case (yet without loss of generality) in the next section. 

2.3 Solution to a Linear-Quadratic Approximation 

 We now turn to the characterization of the optimal solution. In order to more fully depict 

the solution to the problem under consideration, the yield function is approximated by the 

quadratic equation 2( ; , )a a aY N H T bN dN= − , with the understanding that H and T, in part, 

implicitly determine the coefficients b and d. This approximation is not necessary in order to 
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apply the methodology applied here; however, it does ensure that the results are global, rather 

than local around a neighborhood of the steady state. The reader is reminded that we are 

restricting attention to interior solutions. 

 First, it is instructive to examine the question of existence and stability of the steady state. 

From (8), an expression for F in terms of the state and costate variables can be derived (and is 

given in Appendix A). Denoting this function 1 2 1( , , ),F N N λ  and substituting into the four 

differential equations above, the modified Hamiltonian dynamic system (MHDS) can be written 

as:  

  

 
[ ]2

1 1 1 1

(1 ) (1 ) 2 (1 )(1 )

2 (1 )2
atm atm

atm

H bp dp H cH
N k N

dp dp

γ η γ
λ

η γ
− − + + −−= − + +

−
ɺ  (14) 

 
 2 1 2 1 2 2N k N k TNρ= −ɺ  (15) 

 1 2 3
1 1 1 1 2 2

(1 )
( )

atm

ck
k r k

ρ ρλ λ ρ λ
γ
− −= + − −ɺ  (16) 

 2
2 2 2( ) .

atm

ck T
r k Tλ λ

γ
= + −ɺ  (17) 

The dynamics of this system of linear differential equations are governed by the Jacobian of the 

system, denoted here by the 4x4 matrix J, with typical element 1 2 1 2; , ( , , , ).
X

X z N N
z

λ λ∂ ∈
∂

ɺ
 

Because the determinant of J≠0 and the system is linear, the steady-state exits, and, in fact, is 

unique (see Appendix B). Furthermore, it can be shown that the determinant is positive, and 

satisfies the conditions of Theorem 3 in Dockner (1985) (see Appendix C). The stationary point 

is thus a saddle point, and exhibits a two-dimensional stable plane on which all paths 

asymptotically approach the steady state (Tahvonen 1991). At least one of these paths is the 

solution to the problem. 

 We can identify this path by recognizing that along the stable manifold, the solution to 

this system, in general, can be expressed as  

 1 2
1 2( ; , ) r t r tt c e c e∞ ∞= + +1 2

0φ x x ,A x v v  (18) 
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where ( )1 2 1 2( ) ( ) ( ) ( ) ( ) ,N t N t t tλ λ ′⋅ =φ vi, i=1,2 are the 4x1 eigenvectors of J, r i are the 

negative eigenvalues of J, ci are constants that are determined by the initial conditions 

{ }10 20 ,N N=0x  and x∞ are the steady state values of the system. Appendix D details these 

calculations. The specific solution to the problem is thus 

 1
1 1 10 1( ) ( ) k tN t N N N e−

∞ ∞= + −  (19) 

 1 2( )1 2 1 2
2 2 10 1 20 2 1 10

1 2 1 2

( ) ( ) ( )k t k T tk k
N t N N N e N N N N e

k k T k k T

ρ ρ− −
∞ ∞ ∞ ∞

 
= + − + − + − − + − +   (20) 

 1 1λ λ ∞=  (21) 

 2 2 .λ λ ∞=  (22) 

Substituting these values into the equation for F,4 the optimal control is  

 

1 2 3 2
1 2 1 1 2 1

3
2 2

(1 ) (1 )
( , , , ) ( ) ( )

(1 )2

(1 ) ( (1 )2 )
.

(1 ) 2

atm atm atm

atm

atm

k k T H
F t N N N t N t

pd

p b d c

pd

ρ ρλ λ
γ γ η γ

η γ η γ
η γ

∞ ∞
− − −= − − +

−
− − − −+

−

 (23) 

As can be seen in (23), optimal fertilizer application is inversely related to both nitrogen stocks, 

as should be expected. Similarly, an increase in the marginal value of the active nitrogen pool 

through a change in one of the relevant problem parameters (e.g. c, r, or T) increases the 

marginal benefit of fertilizer, resulting in a greater application rate. We now discuss the optimal 

paths of the state and control variables, which are largely determined by the initial stock values. 

 
PROPOSITION 1: The optimal time path of the active nutrient stock N1 is monotonic, and its 

direction is solely determined by the initial stock level.  

 Proof: Differentiate (19) with respect to time t, and note that 

1 10 1sign ( ) sign( ).N N N ∞= − −ɺ  ▄ 

 
PROPOSITION 2: The optimal time path of the decadal nutrient stock N2 is not necessarily 

monotonic, even if the initial stock levels of both N1 and N2 are greater or less than their 

respective steady state values, but can change direction only once. 

 Proof: Begin by differentiating (20) with respect to time to obtain 
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 1 2

2
( )1 2 1 2

2 10 1 2 20 2 10 1
2 1 2 1

( ) ( ) ( ) ( ) .k t k T tk k
N t N N e k T N N N N e

k T k k T k

ρ ρ− −
∞ ∞ ∞

 
= − − − − − − − − ɺ  (24) 

Note that because we have assumed T < k1/k2, the term 2 1 0.k T k− <  As such, the first and third 

additive terms in (24), once expanded,  have opposite signs, with the first term greater in 

absolute value than the third at time t=0. However, given the assumption on T, the first term will 

be dominated by the third after some 0.t τ= > The sign of the time path is thus determined by 

the second term, 2( )
2 20 2( ) ,k T tk T N N e−

∞− − which has the same sign as the third term if the signs on 

0( )i iN N∞−  are identical, but the opposite sign otherwise. If this term is relatively large in 

absolute value, i.e., if the initial value of the N2 is relatively far from its steady state value, then 

the time path of N2 is monotonic; however, if it is relatively small in magnitude, then the sign of 

(24) will change exactly once, at time t=τ, and the time path of this stock will switch direction 

and be either U-shaped or inverted-U shaped.  ▄ 

 
The fact that a nutrient pools can exhibit a non-monotonic optimal path is a feature of the 

multiple state variables in the model, and one that cannot occur with models incorporating only 

one state variable. A similar result regarding global carbon cycles in the context of carbon 

accumulation in the atmosphere can be found in Farzin and Tahvonen (1996). 

 Finally, we turn to the characterization of the optimal path for fertilization. 

 
PROPOSITION 3: The optimal time path of the fertilizer control F is monotonic if the initial 

stock levels of both N1 and N2 are greater than or less than their respective steady state values. 

If, however, one of the initial levels is greater than its respective steady state value and the other 

is less, the optimal fertilization time path will either be monotonic or switch direction exactly 

once. 

 Proof: The proof for Proposition 3 is similar to that of Proposition 2. Substitute (19) and 

(20) into (23), differentiate with respect to t, and collect like terms to obtain 

 1 2 2

2 2
( ) ( )1 2 3 1 2 2 2

10 1 20 2

(1 ) ( )
( ) ( ) ( ).k t k T t k T t

atm atm atm

k k k T k T
F t e e N N e N N

ρ ρ ρ
γ γ γ

− − −
∞ ∞

 − −= − − + −  ɺ  (25) 

Note that the coefficients on each0( )i iN N∞− term are positive under the assumptions of this 

paper. As such, the sign of( )F tɺ is entirely determined by magnitude and sign of the difference 
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between initial and steady state stock values, and in the case of different signs, the time at which 

it is evaluated. Obviously, the sign of (25) does not change if both stocks begin either greater 

than or less than the steady state values, thus implying monotonicity of the time path for 

fertilization. On the other hand, if one of the initial stock values is greater than and one is less 

than their steady state values, Fɺ can change direction at some point 0t τ= > , provided the 

difference between the initial value and steady state for N1 is “large enough”. To see this, note 

that the first term in (25) will decline more rapidly than the second and third term as time 

evolves, given our assumptions on T. If first term is greater in magnitude than the sum of the 

second and third term at time t=0, then there exists some 0t τ= > such that the values are equal. 

The derivative of the optimal fertilization path will thus change sign at τ, and thus the time path 

will switch from increasing to decreasing, or vice-versa. ▄ 

 
The dependence of each nutrient stock level on the other thus allows for a U-shaped or inverted 

U-shaped optimal fertilization schedule. For example, if N1 is low and N2 is high initially, it may 

be optimal to directly substitute for the active pool via decreasing, but positive, fertilization 

levels in the beginning of the planning horizon, building up the stocks of the decadal pool as 

well. As a result of leaching and crop export, however, these gains are eventually diminished, 

and increasing fertilization levels are possible. Again, a model with one state variable and an 

infinite time horizon cannot admit an optimal fertilization schedule that is non-monotonic. Thus, 

a more realistic biogeochemical representation of the nutrient cycling process has important 

implications for the qualitative characterization of the optimal fertilization path and total nitrogen 

stocks. 

 A graphical representation of these concepts in given in Figure 2, which depicts phase 

portraits along the optimal stable manifold.5 Figure 2a shows the relationship between nutrient 

stock levels, and confirms qualitatively the propositions proved above. The diagonal dotted line 

depicts the non-negativity constraint, in that any starting values to the left of the line are 

admissible under the assumption of an interior solution. Using this information, it is clear that the 

non-negativity constraint is binding primarily in situations when initial nutrient levels in both 

pools are relatively high, or the relative distance from the steady state for one pool is 

considerably higher than the other. We would expect initial values such as these to be 

representative of undisturbed land not previously cultivated.  Note that along the stable manifold, 
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the admissible paths to the steady state can be described as a stable node, with monotonic paths 

for N1 regardless of the level for N2. Furthermore, for these parameter values, it can be seen that 

unless N20 is very close to the steady state level, it tends to be monotonic as well.  

 Figures 2b and 2c represent the same paths as those in 1a, but with fertilization on the 

vertical axis and one stock on the horizontal axis. As these graphs are relatively difficult to 

interpret, it is important for the reader to recognize that the paths depicted here are conditional on 

the starting values of the stock not represented in the graph. To see the relationship between the 

three graphs, one particular path labeled “a” has been identified. Figures 2b and 2c graphically 

display the fact that the optimal fertilization schedules are much more likely to be non-

monotonic in nature than N2, a fact which will be quite important when we examine the 

alternative sustainability criteria in the next section. 

3. Sustainability Criteria and the Economic Biogeochemical Model 

 We now turn to a discussion of this model in terms of alternative notions of sustainable 

agriculture, using the macroeconomic growth literature as a guide. Pezzy (1997) summarizes 

several alternative sustainability concepts in terms of constraints that could be placed on a 

present value optimization problem like the one described in equations (2) - (5), and we use 

these, as well as the concepts of constant aggregate welfare level known as the Rawlsian 

“maximin” criterion and the “wealth-constant” criterion put forth by Hicks to examine the 

sustainability properties of the optimal solutions derived in Section 2 (Solow 1974; Hartwick 

1977; Solow 1986; Farzin 2004). For each criterion, we wish to know if the utilitarian optimal 

solution satisfies the particular definition of sustainability, and if not, precisely where it fails to 

do so. 

 For each criterion under consideration, we first formally define the notion of 

sustainability, and then subsequently analyze the optimal solution to answer the question of 

satisfaction. We examine each in turn.  

 
DEFINITION: An optimal path is “strongly sustainable”, or equivalently “ecologically 

sustainable”, if the sum of total nutrient levels across the stock pools does not decline 

throughout the planning horizon. 

 
This is the criterion that is the most restrictive in a purely physical sense, in that it implies that 

1 2( ) ( ) ( ) 0 [0, ).N t N t N t t= + ≥ ∀ ∈ ∞ɺ ɺ ɺ In other words, the initial stock levels are (at least) 
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maintained indefinitely, with no decline in total nutrient stocks allowed at any point over the 

time horizon. From an intergenerational equity point of view, this implies that every subsequent 

generation has at least the same total physical level of the nutrient stocks available for production 

as did the immediately preceding generation. We are thus not necessarily concerned with an 

economic welfare measure under this criterion, but rather an ecological measure. Note that this 

does not require, however, that each individual stock must satisfy 0,iN ≥ɺ i=1,2, as some radical 

ecologists might favor. 

 To evaluate the optimal solution under strong sustainability, differentiate (19) and use 

(24) to obtain 

 1 2 2( ) ( )1 2 2 1 2
1 2 1 10 1 2 20 2

2 1 2 1

1 ( ) ( ).k t k T t k T tk k Tk
N N k e e N N k Te N N

k T k k T k

ρ ρ− − −
∞ ∞

  
+ = − + + − − −  − −  ɺ ɺ  (26) 

As both of the coefficient terms on 0( )i iN N∞−  are non-positive and declining in t, it should be 

obvious that a sufficient condition for the optimal solution to satisfy this criterion is that the 

initial value for each Ni is less than the steady state value. Thus, every path to the southwest of 

the steady state in Figure 2a is strongly sustainable under the definition. However, it is not a 

necessary condition, as the different decay rates given by the eigenvalues –k1 and –k2T allow for 

the possibility that the starting values can be on opposite sides of the steady state and yet still 

satisfy the definition. In other words, although one of the nutrient stocks might be declining over 

a particular subset of the time horizon, the total nutrient stocks may be increasing. In any of these 

cases, however, the initial conditions determine the status of the optimal solution under the 

criterion. 

 It is also noteworthy to recognize that a similar criterion would be the condition that 

1 2 10 20 0( ) ( ) ( )  .N t N t N t N N N t= + ≥ + = ∀  In this case, the aggregate pool is allowed to decline 

over some period of time, but only if the stock was first increased through investment, and not to 

the extent that it ever dips below the initial levels. A simple way to evaluate if the optimal 

solution satisfies this modified ecological criterion is to define the 

line 2 10 20 1( ) ( )N t N N N t= + − and graph it on Figure 2a. Any path that lies continuously to the 

right of this line satisfies the criterion; in the case depicted, most of the paths with relatively 

small initial stocks of N2 fulfill the condition, while those with relatively larger N2 stocks at time 

0 do not. However, in terms of the implications for welfare across generations, we have 



 14 

essentially arbitrarily chosen the first generation as a benchmark, with no real ethical justification 

for this choice.  Furthermore, there would be no need to distinguish between the modification 

and the original definition in the case of one state variable, as the saddle point property in two 

dimensions would ensure monotonicity, and thus equivalence of the criterion. 

 
DEFINITION: An optimal path is “yield sustainable” if the time path of yield does not decline at 

any time throughout the planning horizon. 

 
Yield sustainability, as defined here, is essentially a bridge between a physical concept and an 

economic concept, because the actual object to be sustained is still physical in nature, but the 

sole source of revenue in the model. As output price does not change over time, this idea could 

be called “revenue sustainability” as well. Formally, we define this criterion as 

( ) ( ) 0.a aY t Y N N′= ≥ɺ ɺ Recall that we assumed that over the relevant range of nutrient availability, 

the marginal product of nutrients is positive;6 thus, this condition can be written as 0.aN ≥ɺ  By 

using the expression obtained for F from the first order condition (8) and substituting into (2), 

available nitrogen can be expressed as 

 
( )1(1 ) (1 )

.
(1 )2

atm
a

atm

c bp H
N

dp

η γ λ
η γ

− + − + −
=

−
 (27) 

But recall from (21) that the shadow values associated with each pool are constant, and thus 

0 .aN t= ∀ɺ  Under this model structure, then, any optimal path is yield sustainable. 

 Several caveats need to be recognized at this point. First, we have not restricted fertilizer 

application to an upper bound, thus allowing for constant nitrogen availability over the planning 

horizon (and constant shadow values). This is quite realistic under slightly degraded conditions, 

for example, but unlikely to be possible if soil is severely degraded in terms of nutrient content. 

However, it is the driving force behind the conclusion that any optimal path is yield sustainable, 

as the optimizing agent essentially seeks to maintain Na through the time horizon. The lower 

bound can also affect this conclusion, as high initial values may produce large, economically 

unsustainable yields due to the cost of fertilizer. However, in this case, such situations are ruled 

out. Second, we have assumed that there are no ill effects from continuous fertilizer usage, such 

as water pollution, that subsequently adversely affects yields in future periods. For more 

discussion about these non-negativity and externality issues, see Bond (2004). 



 15 

 
DEFINITION: An optimal path is “profit sustainable” if the time path of profit does not decline 

at any time throughout the planning horizon. 

 
Unlike the previous two criteria, profit sustainability is concerned with the time path of an 

economic welfare measure rather than a physical stock or flow. The profit function in the model 

is ( ) ,apY N cFπ = − so that the time derivative is ( )a apY N N cF cFπ ′= − = −ɺ ɺ ɺɺ using the result 

obtained from the yield sustainability criterion. Clearly, then, we require further analysis of the 

optimal fertilization schedules. Figure 3 depicts these schedules as a function of time, assuming a 

variety of starting values for both the active and decadal nitrogen pools, and splits them into 

paths which violate profit sustainability and those that satisfy it. The initial values, reported in 

the legend relative to the steady state (except for the severely degraded soil), are a subset of those 

shown in Figure 2. Mathematically, we can describe the slope of the path as 

 
2 2

1 2 3 2
1 2

(1 ) ( )
,

atm atm

k k T
F N N

ρ ρ
γ γ
− −= − −ɺ ɺ ɺ  (28) 

which is just a general restatement of (25). Recognizing that both coefficients on the time 

derivatives of nutrient stocks are negative, it is clear that decreasing stock levels over time is 

sufficient to violate the profit sustainability rule, as 0F <ɺ  implies 0.π >ɺ This is also the case 

when one of the pools just happens to begin at the steady state level and the other begins above 

its respective stationary level and monotonically declines. The converse is true for increasing 

stock levels over time, as severely degraded soil offers the opportunity to use fertilization to 

augment natural deposition and restore fertility, and with profit levels low initially, profit 

sustainability is achievable. However, and perhaps most importantly, it is likely that if the initial 

stocks of nutrients are of mixed sign with respect to their distance from the stationary point, then 

Fɺ will change sign and the criterion will be violated. Again, this result cannot be achieved with a 

one-state model. 

 
DEFINITION: An optimal path satisfies the Rawlsian “maximin” sustainability criterion if the 

profit level at each point in time is equal to the maximum constant instantaneous profit level 

possible. 
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This criterion, which has been much discussed in the macroeconomics growth literature, differs 

from profit sustainability in that it requires a degree of intergenerational equity (i.e., maximum 

constant profits over time) not essential under the definition of profit sustainability. This 

criterion suggests a version of the zero net aggregate investment rule, which states that the 

current value of changes in productive asset stocks at each point in time over the planning 

horizon should equal zero (Hartwick 1977; Solow 1986; Farzin 2004). Farzin (2002) shows that 

for any positive discount rate r>0, sustainability in the sense of constant utility (here, profits 

defined as ( ; , )apY N H T cF− ) requires 

 1 1 2 2 0 .N N tλ λ+ = ∀ɺ ɺ  (29) 

Thus, in aggregate, the value of the change in nutrients to the farm’s productivity must be zero at 

each time in the planning horizon.  

 As is obvious from the previous discussion, it is quite unlikely that the optimal solution 

would satisfy (29), as the shadow values are constant and the time derivative of individual 

nutrient stocks can take virtually any sign, and not necessarily of offsetting magnitude. In 

general, then, the optimal solution does not admit the constant maximum profit level typical of 

intergenerational equality. This is not to say that such a solution does not exist, just that it is not 

optimal under the utilitarian paradigm. Such a stationary path would necessitate a loss of welfare 

over some subset of the time horizon by the definition of optimality, but the extent of this loss is 

not examined in this paper. For further analysis, see Bond (2004). However, if we allow (29) to 

be satisfied with an inequality, such that 1 1 2 2 0,N Nλ λ+ ≥ɺ ɺ  the value of net aggregate investment 

will not decrease over time, and thus provides the opportunity for future generations to be at least 

as well off in terms of profit as previous generations. Again, the optimal solution satisfies this 

modified constraint in the case of severely degraded soils with low initial starting values. 

 It is worth noting at this point that the Rawlsian maximin criterion introduces the notion 

of value of the nutrient stocks through the shadow values λi, as opposed to the other 

sustainability criterion that focus primarily on the value of flows alone. It is this difference that 

primarily separates the economic notions of sustainability from more traditional, and perhaps 

more familiar, definitions. In a more general case, such as a fertilization constrained problem, it 

is likely that the values of the stocks will change over the planning horizon (i.e., the λi will not be 
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constant), so the investment rules that would result from imposing maximin sustainability would 

likely be more complicated. 

 
DEFINITION: An optimal path is “stock value sustainable” if the value of the resource base is 

kept in tact over the time horizon.  

   
The internal competitive valuation of any resource stock is given by the shadow value λi(t), so at 

any point in time, the competitive value of the resource base is given by 

 1 1 2 2( ) .V t N Nλ λ= +  

Farzin (2004) suggests that the maintenance of Hicksian income requires the time derivative of 

V(t) be greater than or equal than zero, or formally, 

 1 1 2 2 1 1 2 2( ) 0.V t N N N Nλ λ λ λ= + + + ≥ɺ ɺɺ ɺ ɺ  (30) 

Note that this measure takes into account not only the value of the change in nutrient stock 

levels, as in (29), but also the change in the value of the stock, or the capital gains from holding 

the nutrients in the soil (Farzin 2004). However, as previously discussed, the shadow values on 

each nutrient stock are constant over time, so the two criteria are identical in this case.  

 We have thus shown that in the purely renewable resource model presented here, 

assuming perfect substitutability between fertilizer and indigenous nutrients and no constraints 

on quantity of nutrients the actor can add to the soil, that four of the five sustainability 

constraints take the form 

 1 1 2 2 0,i ic N c N+ ≥ɺ ɺ  (31) 

where the cji are positive coefficients of the i th criterion on the time derivative of the j th stock. 

Clearly, the initial values of each nutrient pool are critical to the utilitarian solution satisfying a 

particular sustainability rule. While not necessary, a sufficient condition for the optimal solution 

to be sustainable for each of the four is for the soil to be extremely degraded compared to the 

steady-state level of the stock. In the case of initial stock levels greater than the steady state 

considered here, “soil mining”, defined as extracting the resource stocks faster than they can be 

replaced, is an optimal strategy. As seen above, this may or may not satisfy any of the 

sustainability criteria.  

 Furthermore, the yield sustainability criterion highlights the difficulty in selecting an 

appropriate sustainability rule. Particularly, is it the availability of a nutrient that must be 
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sustained, which in this case ensures constant yields, or the total nutrient stock level defined by 

the sum of the stocks? Any optimal solution here satisfies the former, but not necessarily the 

latter or any of the other criteria, including the value of net investment, value of the entire farm, 

or profits over time. When considering policies associated with “sustainable agriculture”, then, 

researchers should be especially vigilant in defining what exactly is to be sustained (a physical 

resource, a flow of physical resources, or a measure of welfare) over what time period (Pezzy 

1997). 

 Given these results, we now turn to the comparative statics of the steady state. 

4. Comparative Statics of the Steady State 

 With the sustainability criteria of the form shown in (31), it is useful to examine the 

economic parameters that could be manipulated by policy instruments in order to change the 

steady state level of nutrient stock levels. If, for example, one were to find an instrument, or 

combination of instruments, that would result in an increase in the stationary levels of both N1 

and N2, a larger subset of initial values could be considered sustainable under the criteria. In the 

case of yield sustainability, we would like to know the instruments that can be used to increase 

the steady state level of λ1, and thus Na. Additionally, technology has been assumed constant 

throughout the course of the paper thus far, though the effects of changing technology on 

sustainability and the steady state levels of nutrient stocks and fertilizer is of considerable 

interest. 

 Table 1 reports the comparative statics of the economic and technological parameters of 

the model (for computation, see Bond (2004)). The reader is cautioned that although the 

parameters b and d are implicitly influenced by H and T, these comparative statics assume 

separability between the parameters. 

 An increase in relative output price will ultimately not affect the value of nutrients in the 

soil, but will encourage a greater level of fertilization due to optimal nitrogen availability 

increasing (see (27)). The increased fertilization rate thus increases the steady state levels of both 

nitrogen stocks, and hence allows a greater subset of feasible initial values to be considered 

sustainable under the criteria presented here. However, for each initial set of values, the steady 

state, an ecologically sustainable point, is ‘farther away”, both in terms of stock levels and time. 

Recognize, however, that this result is specific to the assumptions we have made here, as optimal 

cropping intensity might be expected to increase in a more general model, resulting in downward 
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pressure on nutrient stocks. Furthermore, we have ignored any externalities associated with 

fertilizer usage, and subsequent generalizations of the model should take these into account, thus 

influencing the comparative static result. 

 An increase in the relative cost of fertilizer has the anticipated effects of lowering optimal 

nutrient stocks and fertilizer usage, in accordance with the law of demand. We also note that 

such a change increases the marginal value of nutrients in the soil, potentially affecting, to a 

greater extend than the physical criteria, characterization of the economic sustainability rules.  

An increase in the discount rate, representing a preference towards current production at the 

possible expense of future generations, has the same effect on nutrient stocks but the opposite 

effect on shadow values, diminishing the value of holding nutrient stocks, and leading to 

incentives that are consistent with soil mining.  

 We now examine changes in the technological parameters of the production function. An 

increase in b, which is the coefficient on the linear portion of the production function, will 

increase the level of nitrogen that maximizes yields and increase that maximum yield level. After 

the change, yields for each nitrogen availability level are greater than the original. As such, the 

optimal response is to intensify fertilization to take advantage of this new production technology, 

thus leading to greater steady state nutrient stock levels. On the other hand, and increase in d, the 

quadratic term parameter, reduces the level of nitrogen necessary for maximal yield, and reduces 

the maximum yield level as well. Not surprisingly, then, we obtain results opposite to those of b. 

In reality, it is likely that a new technology, e.g. a new hybrid or genetic variety, would affect 

both parameters, as well as the harvest index, thus making the sign of a technology change 

indeterminate. 

 Finally, we examine the comparative statics of the harvest index H and the tillage index 

T. The harvest index is directly related to the export of nitrogen out of the system, so any 

increase will necessitate steady state stock levels less than before the change, with the expected 

decrease in fertilization rates. Tillage, on the other hand, accelerates release from the decadal 

pool, thus increasing the stock levels of N1, but increases turnover of N2. Note that this is the 

only manner in which a manager can actually change the natural biogeochemical dynamics of the 

soil. The sign on the comparative static on the decadal pool thus cannot be determined without 

specific values for the parameters. However, note that an increased tillage index increases the 

value of nutrients in the soil in both pools, yet increases optimal fertilizer rates as well. In 
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subsequent extensions of this paper, we intend to further explore the optimal path of the tillage 

index, thus making it an endogenous part of the model. 

5. Concluding Comments 

 The biophysical representation of the nutrient cycle in soil degradation models is an 

important factor in evaluating optimal paths of fertilizer application and the sustainability of 

agricultural systems. Inclusion of multiple state variables in the form of nutrient pools allows for 

non-monotonic paths of nutrient stocks and fertilization schedules, which subsequently impact 

the characterization of the sustainability of the system under alternative criteria. In particular, 

inclusion of the decadal pool allows for an explicit representation of tillage practices in the 

model, essential for an analysis of these management decisions. Previous analyses neither 

addressed these multiple stocks, nor analyzed the sustainability of optimal responses. 

 While the model presented in this paper incorporates these features, it does have several 

shortcomings. For example, only interior solutions are considered, essentially ensuring stability 

of the endogenous value of each nutrient pool over time. In reality, we would expect that 

fertilizer application would certainly be constrained positive, but also might be constrained from 

above as a result of regulation or chemical reality. Further analysis in the presence of these 

constraints is forthcoming in Bond (2004). Furthermore, there has been some evidence that 

fertilizer and indigenous nutrients are not perfect substitutes, in that long-run fertilizer use 

adversely affects yield levels (Kim, et. al 2001). This is essentially an empirical question, but 

such a relationship could certainly be incorporated into our model. We have also constrained the 

analysis to one limiting nutrient and one choice variable, for simplicity. Allowing for the 

endogeneity of harvest index and tillage may provide a richer analysis, but at the expense of 

enormous complication. Additional nutrients would also add complexity, and make the model 

essentially intractable from an analytical standpoint. Nevertheless, numerical simulation methods 

could be used to solve the more complicated problems, and numerical analysis of the 

sustainability criteria and comparative statics are possible. 

 This general model, which utilizes a biogeochemical structure commonly used in other 

disciplines, can be used to analyze a wide variety of issues relating to sustainable agriculture. 

The sustainability criteria developed here, which incorporate both physical and economic notions 

of sustainability, can also help to shed light on what exactly is to be sustained and over what time 

scale, often neglected in other scientific literature. 
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Appendix A: Derivation of F(N1, N2, λ1) and Conditions that Guarantee an Interior Solution 
 
Assuming a non-binding constraint and the linear-quadratic production function 2( )a a aY N bN dN= − , use (8) to 

solve for F in terms of N1, N2, and λ1, to obtain  

 
( )( )1 2 2 3 1 2 3 1

1 2 1 2 2

(1 ) (1 ) 2 (1 ) (1 )
( , , ) .

2 (1 )
atm

atm

c bp H dp k TN k N
F N N

dp

γ η λ η γ ρ ρ
λ

γ η
− − + − − − + − − −

= −
−

 

and note that the denominator is positive. In order for the non-binding assumption to hold, it must be the case that 

( ) ( )2
3 1 1 2 3 1 2 2(1 ) (1 )2 (1 )(1 ) (1 ) 2 (1 )atm atm atmp b d H c dp k N k TNη γ η γ η γ λ η γ ρ ρ− − − + − − ≥ + − − − + for all t in the 

planning horizon. As λ1 is constant for an interior solution (see (21)), this implies for non-trivial problems that the 
stock levels N1 and N2 never get “too large” relative to the parameters and steady state level of the shadow value for 
the active pool. There are four cases to consider (see Figure 2a for further insight). If (Ni0 - Ni∞)<0 for i=1,2, then an 
interior solution is guaranteed due to the monotonicity of the state paths (see Propositions 1 and 2). If (N10 – N1∞)>0 
and (N20 – N2∞)<0, or both (Ni0 - Ni∞)>0 and the condition above is satisfied at time t=0, then F will remain positive 
through the planning horizon as well (this follows from our assumptions on T, namely that k1>k2T). Finally, if (N10 – 
N1∞)<0 and (N20 – N2∞)>0, then the initial conditions must be such that if optimal fertilization is positive at time t=0 
and the derivative of F with respect to time is less than zero, then the condition above is satisfied over the time 
period where F is declining. 
 

Appendix B: The Steady State Values 
 

Write the system of equations (14)-(17) in the form ,X = JX + bɺ and note any steady state is defined as the solution 

to the system when .=X 0ɺ  If the coefficient matrix J is non-singular for this linear system, then the steady-state 

exists, is unique, and is defined by .∞ = -1X -J b  Using the determinant result from Appendix C and carrying out this 
calculation using the computer program Mathematica 5.0, the steady-state solution to the problem is thus 

( )( )1 2 2 1 1 2 1 2 3

1 1 2

1 2 1 2

2

1

2

( )( ) ( 2 )(1 ) (1 ) ( ( ( (1 )) (1 ) (1 ) (1 ) ( )(1 )

2 ( )( ) (1 )

( )( ) ( 2 )(1 ) (1
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p k r r k T b bH d c H r k T r k H H H k r H k r k T

dk p k r r k T

N p k r r k T b bH d c
N

γ γ η η η ρ η ρ
γ η

ρ γ γ η

λ
λ

∞

∞

∞

∞

+ + − + − + − − + + + − − − − − − + −

+ + −  + + − + − + −   =     ( )( )
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2 1 2

1 2 3 2 3
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2

2

) ( ( ( (1 )) (1 ) (1 ) (1 ) ( )(1 )
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(1 ) (1 )

( )( )
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H r k T r k H H H k r H k r k T

dk Tp k r r k T

ck k T r

k r r k T

ck T

r k T

η η ρ η ρ

γ η
ρ ρ ρ

γ

γ

      − + + + − − − − − − + −   + + − 
− + − −  + +    + 

The steady state value F∞ can be obtained by substitution of these values into the expression for F reported in 
Appendix A. 
 

Appendix C: The Determinant of J and Dockner (1985) Theorem 3 
 
The determinant of 1 2 1 2( )( ) 0.k k T r k r k T= + + >J  Theorem 3 of Dockner (1985) gives conditions under which the 
four eigenvalues of J are real with two positive and two negative, thus ensuring the saddle point property of the 
solution to (14)-(17). Assuming K<0, Dockner’s equation (20) can be rearranged, as in Tahvonen (1991), so that the 
condition is 2 4det( ) 0,− ≥K J where K  is defined as 

1 1 1 1 2 2 2 2 1 2 1 2

1 1 1 1 2 2 2 2 1 2 1 2

/ / / / / /
2

/ / / / / /

N N N N N N N N N N

N N N

λ λ
λ λ λ λ λ λ λ λ λ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
K

ɺ ɺ ɺ ɺ ɺ ɺɺ ɺ ɺ ɺ ɺ ɺ . It can be shown that in this case, 

2 2
1 1 2 2( ) 0,k rk rk T k T= − − − − <Κ and 2 2 2

1 2 1 24det( ) ( ) ( ) 0,k k T k r k T− = − + + >K J  so that the condition in 
Theorem 3 is satisfied and the solution to the system is a saddle point. 
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Appendix D: Derivation of the Explicit Solution 
 
Using Mathematica 5.0, we find the negative eigenvalues of J are defined as 1 2 2 1,  .r k T r k= − = −  Using these values 
to define the eigenvectors vi as those vectors that satisfy Jvi=riv

i, we find that the two (linearly independent) 

eigenvectors of the system are ( )1 0 1 0 0 ′=v  and ( )2
2 1 1 21 /( ) 0 0 .k k k Tρ ′= − +v  Substitute these values 

into the general solution 1 2
1 2( ; , ) r t r tt c e c e∞ ∞= + +1 2

0φ x x ,A x v v  to obtain the solutions in terms of the constants c1 
and c2. Using the initial conditions Ni0=0 for i=1,2, the first two equations of the system can be solved at time t=0 to 

obtain 2 1
1 20 2 1 10

1 2

( ) ( )
k

c N N N N
k k T

ρ
∞ ∞= − − −

−
 and 2 10 1( ).c N N∞= −  Substitution yields the results reported in (19) - 

(22). 
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Figure 1: Schematic of the Nutrient Cycle 
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Figure 2: Optimal Trajectories and Non-Negativity Constraint 
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Figure 3: Optimal Fertilization Schedules Over Time 
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N 1∞ N 2∞ λ 1∞ λ 2∞ F ∞
p + + 0 0 +
c - - + + -
r - - - - -
b + + 0 0 +
d - - 0 0 -
T + +/- + + +
H - - 0 0 -

Table 1: Comparative Statics of the Steady State 
Variable
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Notes
 
1 The authors argue that due to the chemistry of soils, the model can be written in terms of carbon pools using fixed 
C:N ratios for each pool. However, in the interests of simplicity, the analysis is performed using N. 
2 Of course, these assumptions represent a restricted case of a more general model that allows for differential export 
rates for fertilizer and imperfect substitution between fertilizer and indigenous nitrogen. While we recognize this 
potential for generalization, we maintain that the benefits from the relative simplicity outweigh any potential costs. 
3 In other words, [ ]11 2 3 1(1 )(1 )(1 ) 1 ,a H kη ρ ρ= − − − − − 12 2(1 )(1 ) ,a H k Tη= − − 21 2 1,a kρ= and 22 2 .a k T= −  
4 We keep the solution for F in terms of the state and costate variables due to complexity of the solution. 
5 We take here the parameters in Baisden and Amundson (2003) for their 600x103 year old soil: k1=1.05, k2=.052, 
k3=.0002, ρ2=.085, ρ3=.0012, η=.061, γatm=20, T=5, H=0.5, c=.05, p=2, b=0.8, and d=0.01. 
6 There is little evidence in the literature that surplus nutrient availability decreases yields; rather, it generally 
implies a switching of the limiting nutrient or similar element necessary for crop growth. 
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