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Multiple Nutrient Stocks and Sustainable Agriculture

1. Introduction

Concerns over the degradation of agricultural land andrmedities associated with
agricultural production have recently lead to studies mtadled “sustainable agriculture”,
especially in the fields of agronomy and soil sciencgudlly utilizing replicated field trials and
researcher-selected management practices, these stadéesxXamined biological and chemical
responses to alternative management regimes, includmgnlorganic input farming, cover
cropping, and disparate tillage practices. While certaingtructive from a biogeochemical
standpoint, there is a need to incorporate these ideasn economic model of agent behavior
in order to analyze, and in some cases predict, thevioehaf individual growers when faced
with a set of economic incentives.

Many economic models have been developed to analyze adpsoil management
strategies, beginning with those of McConnell (1983) and eBarf1991). These models
recognized that the problem of optimal soil managemerst eyamamic in nature, and used
optimal control theory in order to analyze optimahavior. Extensions to the basic dynamic
model appearing in the literature include a more realispcesentation of specific biophysical
processes (Seppelt 1999), inclusion of multi-period invedtwvenmables to account for capital
stocks (Grepperud 1997), and explicit modeling of the choibesugh which the farmer
optimizes his profits through indirect manipulation of steck of the soil natural resource,
including input utilization (LaFrance 1992; Barrett 1991; Krautkrere 1994; Brekke, et. al
1999; Hoag 1998) and choice of cropping system (Goetz 1997).

To date, however, these models have included relatiwelyles representations of soil
guality via a single state index representing productivitygertsally ignoring the nutrient cycles
now generally accepted and utilized in agronomic simulatitodeling (see Baisden and
Amundson 2003 for details). As the sustainable agricultuneement seeks to find management
practices that can be used to affect these cyclesiltaol® pool structure of nutrient availability
is an imperative. In fact, a more realistic biogeodoahrepresentation of the nutrient cycling
process has important implications for the qualitativeratterization of the optimal fertilization
path and total nitrogen stocks. Few if any analytical dynaeonomic optimization models



have been constructed that have this capability, andfewest have examined optimal behavior
under different sustainability paradigms (one notabteption is Richter and Seppelt 1996).

As such, this paper provides a basic model that can defarséheoretical and numerical
analysis of the sustainability rules of farm-level iagitural practices under alternative
definitions of the concept, including the Rawlsian notidra constant aggregate consumption
(or utility) level known as the “maximin” criterion drthe “wealth-constant” criterion put forth
by Hicks in 1939 (Hartwick 1977; Solow 1986; Farzin 2002; Farzin 2004)3yAamic
biophysical/economic optimal control model is developedimulti-disciplinary framework,
treating soil as a multi-pool portfolio of a particulaniting mobile nutrient (e.g. nitrogen). This
specification allows for fertilizer to directly entdre active pool, while tillage initially affects
the decadal pool, reflecting the realities of agricultpraduction. We examine the properties of
the steady-state, as well as exploring relevant compaustatics for the stationary point. Several
sustainability criteria are proposed, and the optimaigate evaluated in the context of each
definition. For simplicity, we restrict attention taterior solutions, essentially ruling out cases
where initial nutrient stock levels are high relativeheir respective steady state values. Upper
bounds on fertilization, through regulation or leachinggals® assumed away for simplicity; as
such, any generalizations to the results should be madeavition.

This paper is organized as follows. Section 2 descrilbes amalyzes the general
utilitarian model, including a characterization in both meatatical and graphical terms of the
optimal solution to the problem. Section 3 develops séwadternative sustainability criteria in
the context of the general model, and determines ibgitenal solution satisfies the particular
definition under consideration. Section 4 discussesohnaparative statics of the steady state of
the system with respect to the relevant economionpetexs of the problem, such as output price,
input cost, the discount rate, and the technological pateasion the yield function. Section 5
concludes.

2. The General Model: An Economic Biogeochemical Represeniai
2.1 A Model of Nutrient Cycling

Our general model is an adaptation of the long-term delakecosystem
biogeochemistry model presented in Baisden and Amundson (2@@3yed to here as the BA
model. The BA model is a relatively simple analyticgresentation of the structure of popular
(and considerably more complex) dynamic simulation nspdeich as Century and EPIC, that



account for the interaction between plants and soban and/or nutrient flows between storage
compartments. Assuming three pools of a yield-limiting eatr{nitrogen) and one pool of both
above- and below-ground plant biomagfe model can be written as the following system of
differential equations:

9N=IN+B, (1)
dt

whereN is a 4x1 vector of nutrient poold, is the 4x4 matrix of transfer coefficients that
describes movement between the pools,Eadénotes the vector of exogenous nutrient inputs or
outputs of the system. The first row frepresents storage of nitrogen in plant biomass, while
the last three rows correspond to pools of nitrogen tilat over on an approximate annual,
decadal, and millennial scale. We detail our adaptaticimisfgeneral model below; for more
information on the BA model and how it is estimategk 8aisden and Amundson (2003), and
Baisden, et al. (2002a, 2002b).

In order to embody the appropriate biogeochemical strigtuan analytical economic
optimization framework suitable for our analysis, wliitly represent the evolution of two
storage compartments, or stocks, of nitrogen in a matmesaidentical to rows two and three
of (1). Before turning to the full specification, howevé is instructive to trace through the
conceptual framework of the model, beginning with the emoge entry of a unit (kg/ha/yr) of
nitrogen into the system via atmospheric deposition, ddnbyey. This unit first enters the
“active” nitrogen pooN;, so called because it turns over (i.e., gets releasedther portions of
the model) approximately every year. Denote the parartiee governs this turnover xy~1,
so thatk;y of the initial deposition leaves this pool within a y&af thisk;y, a fractionp, (.08 <
p2 < .36 in the BA model) enters the decadal pool of nitrogenotedN,, another fractioms
(.001 <p3 < .007) enters the millennial pool, and the remaindep{1,3) enters the available
supply of nitrogen to any potential vegetation. More geherdle entire pre-existing stock bif
turns over at the same ratg and follows the same pathways, with the majoritieeng the
available supply every year. The second stécturns over as well, witk, (.02 <k, <.08) of the
existing decadal stock released to the available supply gear through natural decomposition
processes. The release from this pool can be acazlethtough tillage practices, denoted

1<T <(k /k;), so that the fraction of total release from theadlet pool isk.T for a given

tillage regime. Because the millennial pool essentiddigs not turn over under most scenarios,



the dynamics of the millennial pool are not explicitipdeled, and as sughkiN; is exported
directly from the active pool each year.

As alluded to above, nitrogen in plant biomass is notiiyenodeled as a stock, but
rather the nitrogen available to any vegetation is catledl as a flow measure. This supply,
denotedN,, consists of a linear combination of the explicitlpnesented state variablBls and
N., taking into account exports via leaching, erosion, dendtibn, etc...and additional supply
sources such as fertilizer and the input from the exogemdiesinial pool. Specifically, define

N.(1) = @=7)[ A= £, = PR N O+ K TN+ Yo+ Yo F( )] 2
wheren represents the export rate out of the system viallbgeaprocesses; denotes inputs
from the excluded pook(t) characterizes fertilizer inputs as a multiplicatigetbr of the natural
rate of atmospheric depositionr, and all other variables are as defined above. Note tha
fertilization is subject to the same export ratehesdther sources of nitrogen, and that fertilizer
is a perfect substitute for indigenous nitrogen.

Finally, in order to complete the nitrogen cycle, taairn of any plant biomass and/or
unused nitrogen from the available supply to the active [gompresented. Following the BA
model, denote a harvest indeix 0 < H < 1, to represent the proportion of available supply, in

nutrient units, extracted through harvest of crop matenmdlying (1-7)(1-H )N, is returned to

the active pool each year. If, for example, the lankkft fallow, H=0. If a crop or sequence of
crops is cultivated, theH is specific to the biological realities of the cramlats nutrient use
efficiency. Baisden and Amundson (2003) assume that FR<.5 in explaining the effect of
agriculture on the natural system. With these assungtite dynamics of the nitrogen cycle
can generally be represented as

N, =[@-7)A-H)1~ p, = 05)- TN+ (=7)(E H K TN+ ¢t Vo F1+Vam )

Nz = Pk N, = K, TN, 4)

which, when taken with (2), essentially corresponds &ofiist three rows of the BA model
presented in (1). We thus have a system of two simpdaiidifferential equations that generally
define the movement of a limiting nutrient through the bimfpemical process. A schematic
representation of the nutrient cycle is presentedgoreil.

2.2 A Model of Economic Behavior



One of the primary contributions of this paper is teegnate this general analytical
description of nutrient cycling, which is at the corev@ny agricultural simulation models, with
the traditional behavioral assumptions of economicgalicular, we assume a sole agent who
owns a normalized unit of land which admits a nitroggecie described by equations (2) - (4).
This (risk-neutral) agent seeks to maximize the streanmsgdrofits over an infinite time horizon
by cultivating a crop or sequence of crops with given é&irindexH and associated tillage
systemT, with fertilizer application as a choice variable.rhore formal terms, the agent solves

the problem (suppressin@gs an argument for available nitrogen and fertilizer)

F=0

maxT[pY(I\L ;H,T)- cHé" d (5)

subject to (2) - (4), and the initial conditions and megativity constraints given by
N,(0)=N,,>0,N,(0)= N,,> O,N, (t> O, andN, {3 ( We definep as the relative price of

one unit of yield, defined by the production functi®(N,), while c is the relative price of
fertilizer in the appropriate units. We assume thandT exogenously and jointly determine the
structure of YN, H,T), andY'(N»)>0, Y'(N,)<0, andY(0)=0.

Several points regarding these assumptions and theus&umt the model are worth
mentioning. First, this specification can be described lagbrid between a traditional renewable
resource problem and a traditional investment problenh, iba dynamic setting. From the point
of view of a renewable resource problem, hartesiepletes a natural resource stdck N; +
N2 which evolves naturally over time and in the absen@ntifropogenic activity, tends towards
a steady-state. In the model described in this papergVewthe conventional “effort” (as
measured by the harvest inde¥ is not a choice variable, nor does one directlgscmne and
accrue benefits from exploitation of the resourcegh&aH is determined through crop choice,
and one can view the choice of the tandérand T (and thus the associated yield function) as
occurring prior to fertilization choice, and fixed throughthe time horizon. This is obviously a
gross simplification, especially with regard to the dixeature of these choices over time, and
can be relaxed (see Bond 2004), but we restrict attenticn tbethe specification in (5) for
simplicity. Viewing the problem as an investment probletme agent purchases stock-
augmenting flows (i.e., investment) in each time periotich in turn add to stock levels
subsequently used in the production process. In this sens@pitee the indirect nature of the
relationship between the state variables and the weftarction. Note that unlike some firm



investment models, there are irreversibilities in itvesnt, in that one can only augment, rather
than deplete, the nutrient stocks through direct manipulatf the control. In other words, we
are constrainingF(t) to be positive over the planning horizon, and therecas be no
“disinvestment” in nutrient stocks available due to thehjimtive costs of doing so. A value of
F(t)=0 with a harvest index greater than zero impliesvailon without any fertilization.

Second, we have assumed constant relative pricesl@/&me horizon. While this may
be troublesome if the model were extended over a largegrgglnic area, thus introducing
endogeneity into price determination, we argue that tlgdesprice-taking agent specification
minimizes any potential errors given the necessaryacall simplifications. Of course, different
expectations over future prices can (and most likell) ailer the optimal investment strategies.
Lastly, we have specified an infinite terminal timergkly as a result of the fact that the problem
makes economic sense only if a steady-state solutithetproblem exists.

We now turn to the necessary and sufficient condtithat must be satisfied for a
solution to (2) - (5) and the initial and terminal coratis. Define the current-value Hamiltonian
as

HY(F,N,, N,, 4,4, H,T)= pY( N(N, N, B; H J- cF
+A [aN + a, N+ (1=7) A= H)V 5+ Van F)+ V] (6)
+2,[a, N, + a, N,
wherel; andi; are the current-value costate variable®lpandN,, respectively, reflecting the
shadow values of the two stocks, and dfie (i,j=1,2) are the coefficients a¥ andN; in (3)
and (4)% Defining the Lagrangian as
L(F,N,,N,,A,,A,,;H,T)= H (F,N,,N, A, A;H T+ uF 7)
whereu is the shadow value associated with the non-negativitgtcaint onF, Theorem 36.3 of
Caputo (2004) gives the necessary conditions for an apsatution:

Le =(@-m)[PY' (N )am + A Q= H)Y o] = ¢+ =0; F2 0,42 0, u F= ( (8)
] — _ _ d (all+k1)_
A =(r-ay)A pY(l\L)—(l_H) ad, (9)
i vy a, _
A, =(r=ay)A,= pY'(N) —H) as, (10)

Nl =[(1_I7)(1_ H )(1_ P~ P )_ ]] k1N1+ (1_/7 )(1_ H I szN2+ (/3"' Vatm F] + Vam (11)



Nz = P,k N, = K, TN, (12)
lim N. =0, i=12. (13)

to oo

We will restrict attention in this paper to the easf an interior solution; i.ey4=0, although it
should be noted that there are some interestirgsaaben the non-negativity constraint binds at
some point over the planning horizon (see Apperdier conditions that guarantee an interior
solution, and Bond (2004) for further details). #\gh, the optimal solution will lead to a steady
state. Sufficiency conditions are satisfied as wadlTheorem 36.4 of Caputo (2004) can be used

because for any admissible contfohnd associated state pathL is concave inK, Ni, Ny), and

tooo “

2
lim Z;/lj [N/ =N, |<0, whereN; is the optimal state path associated with any optimatrol
J:

F* that satisfies (8)-(13). Thus, any solution to the remgsconditions is an optimal control,
although this theorem does not guarantee uniqueness.

Interpretation of the necessary conditions is nedat straightforward. Equation (8) states
that the marginal value generated by application of aodifértilizer, in terms of botimmediate
benefits through crop growth and harvesting amdirect benefits through the unused portion
returned to the nitrogen system, must equal the margosdl of fertilizer at each moment in
time. Equations (11) and (12) just restate the structurehef system, and (13) is the
transversality condition that ensures non-negativityhe nitrogen stocks. From (9) and (10),
each costate variable (or the shadow price associatecach pool of nitrogen), must grow at
the rate of discount less the marginal value lost gghiin each pool through export (import) of
both harvesting and natural processes. Because fert@imb indigenous nutrients are perfect
substitutes, we are assuming an interior solution, agek tis no upper bound on fertilizer use,
the reader might already suspect that the costat@bl@siare constant over time, a result we will
confirm for a special case (yet without loss of geritgjah the next section.

2.3 Solution to a Linear-Quadratic Approximation

We now turn to the characterization of the optinwdditson. In order to more fully depict
the solution to the problem under consideration, thedyfahction is approximated by the
quadratic equatiorY(N,; H, T)= bN - dN?, with the understanding that and T, in part,

implicitly determine the coefficients andd. This approximation is not necessary in order to



apply the methodology applied here; however, it doearerthat the results are global, rather
than local around a neighborhood of the steady state.r&ader is reminded that we are
restricting attention to interior solutions.

First, it is instructive to examine the question of &xise and stability of the steady state.
From (8), an expression fér in terms of the state and costate variables can beedefand is

given in Appendix A). Denoting this functiof (N,, N,,4,), and substituting into the four

differential equations above, the modified Hamiltorsgmamic system (MHDS) can be written

as:

(A=-H) Yam(@~)[ (A~ H)bp+ 2dpy,,,| + (- H)c

R @=7)20 o
Nz = kipz Nl_ szNz (15)

/11 = (k1 + r)/]l - k]pz/] 2= Ckl(l_ypz — ,03) (16)

J, =@ kA, - ST (17)

atm

The dynamics of this system of linear differengglations are governed by the Jacobian of the
system, denoted here by the 4x4 matkjxwith typical element%—x; X,zO(N, N,AA,).
z

Because the determinant &0 and the system is linear, the steady-state exits,iardct, is
unique (see Appendix B). Furthermore, it can be shown teadéterminant is positive, and
satisfies the conditions of Theorem 3 in Dockner (1988¢ (Appendix C). The stationary point
is thus a saddle point, and exhibits a two-dimensional estaldne on which all paths
asymptotically approach the steady state (Tahvonen 1991kast one of these paths is the
solution to the problem.

We can identify this path by recognizing that along thblsteanifold, the solution to

this system, in general, can be expressed as

o(t;x,, Xy, A) =X, +cVviet + v’ é (18)



where (1= (N, () N,(t) A(D Az(t))' V', i=1,2 are the 4x1 eigenvectors &fr; are the
negative eigenvalues of, ¢, are constants that are determined by the initial tondi
X, ={N10 NZO}, and x., are the steady state values of the system. Appendietlils these

calculations. The specific solution to the problem issth

N, (t) = Ny, + (N = N,,) ex! (19)
= & — Skt _ klpz _ skoT)t
N, (t) = N, +_k1+k2T(N10 N,.) e +[ Nyg= N, +—‘K+ I«;T( N, '\L)j e (20)
A=A (21)
A=A, (22)

Substituting these values into the equatior8ithe optimal control is
_ k1(1_102 B /03) sz (1_ H )
F(t,N,N,, A )=—21""2 3 N@{H)-——2* N()+—"-———
v Var T Vam o @=m)2pdy g,
+A=1)PVen (- A-77)2dy;)- C
(L-n7)*2pdys,,

As can be seen in (23), optimal fertilizer appleoatis inversely related to both nitrogen stocks,

(23)

as should be expected. Similarly, an increase enntiarginal value of the active nitrogen pool
through a change in one of the relevant problenameters (e.gc, r, or T) increases the
marginal benefit of fertilizer, resulting in a gteaapplication rate. We now discuss the optimal
paths of the state and control variables, whichagely determined by the initial stock values.

PROPOSITION 1The optimal time path of the active nutrient stdgkis monotonic, and its
direction is solely determined by the initial stdekel.

Proof.  Differentiate (19) with respect to timet, and note that

sign (Nl) ==signfN,,— N,, ) .

PROPOSITION 2:The optimal time path of the decadal nutrient ktdk is not necessarily
monotonic, even if the initial stock levels of bothand N are greater or less than their
respective steady state values, but can changetaineonly once.

Proof: Begin by differentiating (20) with respect to titweobtain
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N, () == 22 (N~ Ny e - kﬂ{( N M) 2 (N N[ #7020

Note that because we have assumedki/k,, the termk,T — k <0. As such, the first and third

additive terms in (24), once expanded, have oppasgns, with the first term greater in
absolute value than the third at tits®. However, given the assumption Brthe first term will
be dominated by the third after some r >0.The sign of the time path is thus determined by

Tt

the second term;k, T(N,,— N,.) €*"*, which has the same sign as the third term if thesson

(N,,—N_) are identical, but the opposite sign otherwisethl§ term is relatively large in

absolute value, i.e., if the initial value of tNe is relatively far from its steady state value,nthe
the time path of lis monotonic; however, if it is relatively small magnitude, then the sign of
(24) will change exactly once, at tinter, and the time path of this stock will switch direction

and be either U-shaped or inverted-U shaped. -

The fact that a nutrient pools can exhibit a non-monotopitmal path is a feature of the
multiple state variables in the model, and one thah@gaoccur with models incorporating only
one state variable. A similar result regarding glokabon cycles in the context of carbon
accumulation in the atmosphere can be found in FargnTahvonen (1996).

Finally, we turn to the characterization of the oati path for fertilization.

PROPOSITION 3The optimal time path of the fertilizer control F is monotoniché initial
stock levels of both;Nand N are greater than or less than their respective steady statesvalue
If, however, one of the initial levels is greater than its retpe steady state value and the other
is less, the optimal fertilization time path will either be monat or switch direction exactly
once.

Proof: The proof for Proposition 3 is similar to that of Prepion 2. Substitute (19) and

(20) into (23), differentiate with respectticand collect like terms to obtain

. qu(l—Pz—pg)e-klt_M et (N, - Noo)+ﬂ gleny( No— N.). (25)

atm atm atm

Note that the coefficients on edd¥), — N, )term are positive under the assumptions of this

paper. As such, the sign Btt)is entirely determined by magnitude and sign of the difieze
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between initial and steady state stock values, anceindbe of different signs, the time at which
it is evaluated. Obviously, the sign of (25) does not ghaih both stocks begin either greater
than or less than the steady state values, thus imgplyionotonicity of the time path for

fertilization. On the other hand, if one of the initsdock values is greater than and one is less

than their steady state valueB,can change direction at some point 7 >0, provided the
difference between the initial value and steady dtat®\; is “large enough”. To see this, note
that the first term in (25) will decline more rapidlyaththe second and third term as time
evolves, given our assumptions ®nlf first term is greater in magnitude than the sumhef
second and third term at tine0, then there exists sonte= r > 0such that the values are equal.
The derivative of the optimal fertilization path wilius change sign at and thus the time path

will switch from increasing to decreasing, or vice-versa. =

The dependence of each nutrient stock level on the dibsratlows for a U-shaped or inverted
U-shaped optimal fertilization schedule. For exampldl; is low andN. is high initially, it may
be optimal to directly substitute for the active pool viardasing, but positive, fertilization
levels in the beginning of the planning horizon, building up $tocks of the decadal pool as
well. As a result of leaching and crop export, howeversdéhgains are eventually diminished,
and increasing fertilization levels are possible. Agaimael with one state variable and an
infinite time horizon cannot admit an optimal fer@ion schedule that is non-monotonic. Thus,
a more realistic biogeochemical representation ofrimgient cycling process has important
implications for the qualitative characterizatiortloé optimal fertilization path and total nitrogen
stocks.

A graphical representation of these concepts in givefigare 2, which depicts phase
portraits along the optimal stable manifSléigure 2a shows the relationship between nutrient
stock levels, and confirms qualitatively the propositioreved above. The diagonal dotted line
depicts the non-negativity constraint, in that anytistgrvalues to the left of the line are
admissible under the assumption of an interior satuligsing this information, it is clear that the
non-negativity constraint is binding primarily in situatiomben initial nutrient levels imoth
pools are relatively high, or the relative distance frtime steady state for one pool is
considerably higher than the other. We would expeciainitalues such as these to be
representative of undisturbed land not previously cultdzatdote that along the stable manifold,
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the admissible paths to the steady state can beilisd@s a stable node, with monotonic paths
for N; regardless of the level foNd,. Furthermore, for these parameter values, it carede that
unlessNy is very close to the steady state level, it tends tmdbeotonic as well.

Figures 2b and 2c represent the same paths as thosebut lath fertilization on the
vertical axis and one stock on the horizontal axis.tifese graphs are relatively difficult to
interpret, it is important for the reader to recogriz the paths depicted here are conditional on
the starting values of the stock not represented in dqghgiTo see the relationship between the
three graphs, one particular path labeled “a” has beenifidd. Figures 2b and 2c graphically
display the fact that the optimal fertilization edales are much more likely to be non-
monotonic in nature tham,, a fact which will be quite important when we examihe t
alternative sustainability criteria in the next sattio
3. Sustainability Criteria and the Economic Biogeochemical Moel

We now turn to a discussion of this model in termsltdrnative notions of sustainable
agriculture, using the macroeconomic growth literature agiide. Pezzy (1997) summarizes
several alternative sustainability concepts in termsasfstraints that could be placed on a
present value optimization problem like the one describedjuat®ns (2) - (5), and we use
these, as well as the concepts of constant aggregdtarevéevel known as the Rawlsian
“maximin” criterion and the “wealth-constant” criterigput forth by Hicks to examine the
sustainability properties of the optimal solutions deriirecsection 2 (Solow 1974; Hartwick
1977; Solow 1986; Farzin 2004). For each criterion, we wish tovkihthe utilitarian optimal
solution satisfies the particular definition of susaifity, and if not, precisely where it fails to
do so.

For each criterion under consideration, we firstmially define the notion of
sustainability, and then subsequently analyze the optimiation to answer the question of

satisfaction. We examine each in turn.

DEFINITION: An optimal path is “strongly sustainable”, or equivalently “ecologically
sustainable”, if the sum of total nutrient levels across the siooils does not decline

throughout the planning horizon.

This is the criterion that is the most restrictineai purely physical sense, in that it implies that

N(t) = N,(t)+ N,(§ =0 Ot[0,0).In other words, the initial stock levels are (at fpas
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maintained indefinitelywith no decline in total nutrient stocks allowed at any point over the
time horizon.From an intergenerational equity point of view, this iegpthat every subsequent
generation has at least the same total physical |é¥kéamutrient stocks available for production
as did the immediately preceding generation. We are nibtisiecessarily concerned with an
economic welfare measure under this criterion, but rathezcological measure. Note that this
does not require, however, that each individual stock satsfy N, >0,i=1,2, as some radical
ecologists might favor.

To evaluate the optimal solution under strong sustaibgbdifferentiate (19) and use
(24) to obtain

k,T—-K kT-k

As both of the coefficient terms ofN,, — N ) are non-positive and declining init should be

Nw&{—k{ﬂﬂj gt + 1K é‘mi( - M- KTED( M- ). (26)

obvious that a sufficient condition for the optimalusion to satisfy this criterion is that the
initial value for each\; is less than the steady state value. Thus, evehytpathe southwest of
the steady state in Figure 2a is strongly sustainableruhe definition. However, it igot a
necessary condition, as the different decay ratesngby the eigenvaluekrand kT allow for
the possibility that the starting values can be on dfgpsgles of the steady state and yet still
satisfy the definition. In other words, although onehef nutrient stocks might be declining over
a particular subset of the time horizon, the total eatrstocks may be increasing. In any of these
cases, however, the initial conditions determine tl¢us of the optimal solution under the
criterion.

It is also noteworthy to recognize that a similatecion would be the condition that

N(t) = N, () + N,()= Ny+ N,,= N,Ot In this case, the aggregate pool is allowed to decline

over some period of time, but only if the stock wag fimsreased through investment, and not to
the extent that it ever dips below the initial levéissimple way to evaluate if the optimal
solution  satisfies this  modified ecological criterionis to define the
line N, (t) = N,,+ N,,— N(9and graph it on Figure 2a. Any path that lies continuouslithe
right of this line satisfies the criterion; in the cakpicted, most of the paths with relatively

small initial stocks oN, fulfill the condition, while those with relativelargerN, stocks at time

0 do not. However, in terms of the implications for faed across generations, we have
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essentially arbitrarily chosen the first generatismdenchmark, with no real ethical justification
for this choice. Furthermore, there would be no needistinguish between the modification
and the original definition in the case of one statgabée, as the saddle point property in two

dimensions would ensure monotonicity, and thus equivalefrite @riterion.

DEFINITION: An optimal path is “yield sustainable” if the time path of yield doeesdecline at

any time throughout the planning horizon.

Yield sustainability, as defined here, is essentiallyidgler between a physical concept and an
economic concept, because the actual object to be rebtai still physical in nature, but the
sole source of revenue in the model. As output pries dmt change over time, this idea could
be called ‘“revenue sustainability” as well. Formally,e wdefine this criterion as

Y () =Y'(N) N =0.Recall that we assumed that over the relevant rahgatrient availability,

the marginal product of nutrients is positi/equs, this condition can be written &k >0. By

using the expression obtained forfrom the first order condition (8) and substituting (&),
available nitrogen can be expressed as

N - —Cc+ (1_,7)yatm(bp+ (1_ HMl) .

(1=17)2dpY

But recall from (21) that the shadow values associatéld @ich pool are constant, and thus

(27)

N, =0 Ot. Under this model structure, themy optimal path is yield sustainable.

Several caveats need to be recognized at this paist, We have not restricted fertilizer
application to an upper bound, thus allowing for constandgetn availability over the planning
horizon (and constant shadow values). This is quitest&alinder slightly degraded conditions,
for example, but unlikely to be possible if soil is selyetegraded in terms of nutrient content.
However, it is the driving force behind the conclusiort Hrey optimal path is yield sustainable,
as the optimizing agent essentially seeks to mairitiaithrough the time horizon. The lower
bound can also affect this conclusion, as high initidles may produce large, economically
unsustainable yields due to the cost of fertilizer. He@wgin this case, such situations are ruled
out. Second, we have assumed that there are ndettf®ffrom continuous fertilizer usage, such
as water pollution, that subsequently adversely affgekis in future periods. For more
discussion about these non-negativity and externabtyeis, see Bond (2004).
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DEFINITION: An optimal path is “profit sustainable” if the time pabf profit does not decline
at any time throughout the planning horizon.

Unlike the previous two criteria, profit sustainability asncerned with the time path of an
economic welfare measure rather than a physical stoftéw. The profit function in the model

is 77=pY(N,) - cFso that the time derivative i= pY'(N,) N, - cF=- cFusing the result
obtained from the yield sustainability criterion. &y, then, we require further analysis of the
optimal fertilization schedules. Figure 3 depicts theedeedules as a function of time, assuming a
variety of starting values for both the active andadet nitrogen pools, and splits them into
paths which violate profit sustainability and those gwtisfy it. The initial values, reported in
the legend relative to the steady state (except fosdterely degraded soil), are a subset of those
shown in Figure 2. Mathematically, we can describe ldgesof the path as

F' [ kiz(l_pz _103) Nl _ (sz)2 NZ! (28)

yatm yatm

which is just a general restatement of (25). Recogniziag Ioth coefficients on the time

derivatives of nutrient stocks are negative, it is rctbat decreasing stock levels over time is

sufficient to violate the profit sustainability rules & <0 implies 77> 0.This is also the case
when one of the pools just happens to begin astiwdy state level and the other begins above
its respective stationary level and monotonicakkglshes. The converse is true for increasing
stock levels over time, as severely degraded d@rothe opportunity to use fertilization to
augment natural deposition and restore fertilitgd avith profit levels low initially, profit
sustainability is achievable. However, and perhapst importantly, it is likely that if the initial
stocks of nutrients are of mixed sign with resgedheir distance from the stationary point, then
F will change sign and the criterion will be violatéhain, this result cannot be achieved with a
one-state model.

DEFINITION:An optimal path satisfies the Rawlsian “maximin”sginability criterion if the
profit level at each point in time is equal to theximum constant instantaneous profit level
possible.
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This criterion, which has been much discussed enntlacroeconomics growth literature, differs
from profit sustainability in that it requires agiee of intergenerational equity (i.e., maximum
constant profits over time) not essential under the debnitof profit sustainability. This
criterion suggests a version of the zero net aggeegivestment rule, which states that the
current value of changes in productive asset statksach point in time over the planning
horizon should equal zero (Hartwick 1977; Solow@&%arzin 2004). Farzin (2002) shows that
for any positive discount rate>0, sustainability in the sense of constant uti{ingre, profits
defined aspY (N, H T ) cF) requires

AN, +A,N, =0 Ot. (29)
Thus,in aggregatethe value of the change in nutrients to the farproductivity must be zero at
each time in the planning horizon.

As is obvious from the previous discussion, ifuste unlikely that the optimal solution
would satisfy (29), as the shadow values are consiad the time derivative of individual
nutrient stocks can take virtually any sign, and necessarily of offsetting magnitude. In
general, then, the optimal solution does not adin@tconstant maximum profit level typical of
intergenerational equality. This is not to say thath a solution does not exist, just that it is no
optimal under the utilitarian paradigm. Such aistetry path would necessitate a loss of welfare
over some subset of the time horizon by the dédmiof optimality, but the extent of this loss is

not examined in this paper. For further analysg, Bond (2004). However, if we allow (29) to
be satisfied with an inequality, such thaN, + A,N,> 0, the value of net aggregate investment

will not decrease over time, and thus provides the opptytiam future generations to be at least
as well off in terms of profit as previous generatiohgain, the optimal solution satisfies this
modified constraint in the case of severely degradesd wdtih low initial starting values.

It is worth noting at this point that the Rawlsianxmain criterion introduces the notion
of value of the nutrient stocks through the shadow valugsas opposed to the other
sustainability criterion that focus primarily on thdueof flows alone. It is this difference that
primarily separates the economic notions of sustdihaliiom more traditional, and perhaps
more familiar, definitions. In a more general casehsag a fertilization constrained problem, it

is likely that the values of the stocks will changerthe planning horizon (i.e., thewill not be
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constant), so the investment rules that would resmfh imposing maximin sustainability would
likely be more complicated.

DEFINITION: An optimal path is “stock value sustainable” if theuelof the resource base is
kept in tact over the time horizon.

The internal competitive valuation of any resourcelstsgiven by the shadow valugt), so at
any point in time, the competitive value of the resolnase is given by
V(t) =A N, +A,N,.

Farzin (2004) suggests that the maintenance of Hicksiammcequires the time derivative of
V(t) be greater than or equal than zero, or formally,

V(1) = AN, +A,N,+ A, N,+A,N,>0. (30)
Note that this measure takes into account not only the \Hluke change in nutrient stock
levels, as in (29), but also the change in the valueeo§tock, or the capital gains from holding
the nutrients in the soil (Farzin 2004). However, as ptshodiscussed, the shadow values on
each nutrient stock are constant over time, so tbectteria are identical in this case.

We have thus shown that in the purely renewable resomadel presented here,
assuming perfect substitutability between fertilizer andgewbus nutrients and no constraints
on quantity of nutrients the actor can add to the g$bdt four of the five sustainability
constraints take the form

¢, N, +¢, N,>0, (31)
where thec; are positive coefficients of tH& criterion on the time derivative of th® stock.
Clearly, the initial values of each nutrient pool anéical to the utilitarian solution satisfying a
particular sustainability rule. While not necessargutiicient condition for the optimal solution
to be sustainable for each of the four is for thé teobe extremely degraded compared to the
steady-state level of the stock. In the case diainstock levels greater than the steady state
considered here, “soil mining”, defined as extracting #surce stocks faster than they can be
replaced, is an optimal strategy. As seen above, tlag ar may not satisfy any of the
sustainability criteria.

Furthermore, the yield sustainability criterion highlghhe difficulty in selecting an

appropriate sustainability rule. Particularly, is i tAvailability of a nutrient that must be
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sustained, which in this case ensures constant yieldse totéh nutrient stock level defined by
the sum of the stocks®ny optimal solution here satisfies the former, but netessarily the
latter or any of the other criteria, including the vatdaet investment, value of the entire farm,
or profits over time. When considering policies assediavith “sustainable agriculture”, then,
researchers should be especially vigilant in definingtvédxactly is to be sustained (a physical
resource, a flow of physical resources, or a measurveetifre) over what time period (Pezzy
1997).

Given these results, we now turn to the comparatates of the steady state.
4. Comparative Statics of the Steady State

With the sustainability criteria of the form shown (31), it is useful to examine the
economic parameters that could be manipulated by poli¢guments in order to change the
steady state level of nutrient stock levels. If, faample, one were to find an instrument, or
combination of instruments, that would result in an ineeea the stationary levels of badth
andN; a larger subset of initial values could be considerethsadble under the criteria. In the
case of yield sustainability, we would like to know thstinments that can be used to increase
the steady state level éf, and thus N Additionally, technology has been assumed constant
throughout the course of the paper thus far, though tleetefof changing technology on
sustainability and the steady state levels of nutriémtks and fertilizer is of considerable
interest.

Table 1 reports the comparative statics of the ecomamt technological parameters of
the model (for computation, see Bond (2004)). The readerausioned that although the
parameterd and d are implicitly influenced byH and T, these comparative statics assume
separability between the parameters.

An increase in relative output price will ultimatelytragfect the value of nutrients in the
soil, but will encourage a greater level of fertilipatidue to optimal nitrogen availability
increasing (see (27)). The increased fertilization tlaie increases the steady state levels of both
nitrogen stocks, and hence allows a greater subset sibfeanitial values to be considered
sustainable under the criteria presented here. Howereeath initial set of values, the steady
state, an ecologically sustainable point, is ‘farl@ay”, both in terms of stock levels and time.
Recognize, however, that this result is specific taatmimptions we have made here, as optimal
cropping intensity might be expected to increase in @mgeneral model, resulting in downward
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pressure on nutrient stocks. Furthermore, we have ignang externalities associated with
fertilizer usage, and subsequent generalizations of duehshould take these into account, thus
influencing the comparative static result.

An increase in the relative cost of fertilizer hlas anticipated effects of lowering optimal
nutrient stocks and fertilizer usage, in accordance vghlaw of demand. We also note that
such a change increases the marginal value of nutriertke igoil, potentially affecting, to a
greater extend than the physical criteria, characteizaf the economic sustainability rules.
An increase in the discount rate, representing a prefereswards current production at the
possible expense of future generations, has the samé effewitrient stocks but the opposite
effect on shadow values, diminishing the value of holdingient stocks, and leading to
incentives that are consistent with soil mining.

We now examine changes in the technological paramdténe production function. An
increase inb, which is the coefficient on the linear portion dftproduction function, will
increase the level of nitrogen that maximizes yieldsiacidtase that maximum yield level. After
the change, yields for each nitrogen availability lew& greater than the original. As such, the
optimal response is to intensify fertilization t&eéaadvantage of this new production technology,
thus leading to greater steady state nutrient stocksle@el the other hand, and increasd, ithe
guadratic term parameter, reduces the level of nitrogerssmgefor maximal yield, and reduces
the maximum yield level as well. Not surprisingly, them, @btain results opposite to thosebof
In reality, it is likely that a new technology, e.gnew hybrid or genetic variety, would affect
both parameters, as well as the harvest index, thksngiéhe sign of a technology change
indeterminate.

Finally, we examine the comparative statics of thevdsrindexH and the tillage index
T. The harvest index is directly related to the exmdrhitrogen out of the system, so any
increase will necessitate steady state stock legststhan before the change, with the expected
decrease in fertilization rates. Tillage, on the oti@nd, accelerates release from the decadal
pool, thus increasing the stock levelsNaf but increases turnover dk. Note that this is the
only manner in which a manager can actually change the hhingaochemical dynamics of the
soil. The sign on the comparative static on the degaalallthus cannot be determined without
specific values for the parameters. However, note @haincreased tillage index increases the
value of nutrients in the soil in both pools, yet incesasptimal fertilizer rates as well. In
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subsequent extensions of this paper, we intend to furtidorexthe optimal path of the tillage
index, thus making it an endogenous part of the model.
5. Concluding Comments

The biophysical representation of the nutrient cyolesail degradation models is an
important factor in evaluating optimal paths of ferélizapplication and the sustainability of
agricultural systems. Inclusion of multiple stateiafles in the form of nutrient pools allows for
non-monotonic paths of nutrient stocks and fertilizationeslules, which subsequently impact
the characterization of the sustainability of thetesysunder alternative criteria. In particular,
inclusion of the decadal pool allows for an explicit egntation of tillage practices in the
model, essential for an analysis of these managemeirdicthesc Previous analyses neither
addressed these multiple stocks, nor analyzed the suslisynaf optimal responses.

While the model presented in this paper incorporateg tieagures, it does have several
shortcomings. For example, only interior solutions areswered, essentially ensuring stability
of the endogenous value of each nutrient pool over timeedlity, we would expect that
fertilizer application would certainly be constrainedipes, but also might be constrained from
above as a result of regulation or chemical reakiyrther analysis in the presence of these
constraints is forthcoming in Bond (2004). Furthermorerdghhas been some evidence that
fertilizer and indigenous nutrients are not perfect sues, in that long-run fertilizer use
adversely affects yield levels (Kim, et. al 2001). Thigssentially an empirical question, but
such a relationship could certainly be incorporated intonaodel. We have also constrained the
analysis to one limiting nutrient and one choice vaealibr simplicity. Allowing for the
endogeneity of harvest index and tillage may provide a riahalysis, but at the expense of
enormous complication. Additional nutrients would alslol @omplexity, and make the model
essentially intractable from an analytical standpdigvertheless, numerical simulation methods
could be used to solve the more complicated problems, amcerical analysis of the
sustainability criteria and comparative statics areipless

This general model, which utilizes a biogeochemical streactcommonly used in other
disciplines, can be used to analyze a wide varietyg®afes relating to sustainable agriculture.
The sustainability criteria developed here, which incorpdrate physical and economic notions
of sustainability, can also help to shed light on whatdy is to be sustained and over what time
scale, often neglected in other scientific literature.



21

Appendix A: Derivation of F(N;, Ny, 4;) and Conditions that Guarantee an Interior Solution

Assuming a non-binding constraint and the linear-quadpatiduction functionY (N,) = bN, — dN?, use (8) to
solve forF in terms ofN;, N,, andi,, to obtain

C = Van(@=)(bP+ (A= H)A, - 2dp(1=n ) k TN+ s~ k(= p,=p2) N))

2dpy,y, (A-17)°
and note that the denominator is positive. In ordertfernon-binding assumption to hold, it must be the caae th
A=17) PV (b= @=17)2dy; ) + (=17 )& H Yo = o+ (17 § 20p,( k (& 0,—p, IN+ K TN)for all t in the
planning horizon. A4, is constant for an interior solution (see (21)), thiplies for non-trivial problems that the
stock levelsN; andN, never get “too large” relative to the parameters aratigtstate level of the shadow value for
the active pool. There are four cases to considerHigeee 2a for further insight). INp - Ni,,)<0 fori=1,2, then an
interior solution is guaranteed due to the monotonicityhefstate paths (see Propositions 1 and 2N - Ny..)>0
and (2o — Np.,,)<0, or both Ni - Ni,,)>0 and the condition above is satisfied at tir@ thenF will remain positive
through the planning horizon as well (this follows from owuasptions on T, namely thit>k,T). Finally, if (N;o—
N1,,)<0 and Ny — N;,,)>0, then the initial conditions must be such thaptiroal fertilization is positive at time=0
and the derivative o with respect to time is less than zero, then thaliton above is satisfied over the time
period wherd= is declining.

F(N, N, A) = -

Appendix B: The Steady State Values

Write the system of equations (14)-(17) in the foxs JX +b, and note any steady state is defined as the solution

to the system wheiX =0. If the coefficient matrixJ is non-singular for this linear system, then tteady-state

exists, is unique, and is defined by, =-J'b. Using the determinant result from Appendix C and carryingdtosit

calculation using the computer prografathematica 5.0the steady-state solution to the problem is thus

Pl + (1 +K,T) (b= bH+ 20y, )(A=7)+ o1~ H)((=(r+ K T) (r+ K(Hen (= H)= (= H)Ki7 b~ ( H)K (+ K T)E7 py)
2dk p(K + N(r+ KT, (1-17)

. /cvz[lo(kl+ N +K,T) Vym(b= bH+ 2y, )(1-17) + o1~ H)((-(r +K,T)(r+ky(H +7(0= H)) = (L= H)kr(1=17)p, = (1= H ) (r + K, T )(2-77 )03)}

2= 2dk, Tp(k + D(r+ K TY,n(d-7)
ck (K T(L-p,)+ 1(L- p,~ p5)
2‘” (kg +1)(r +K,T) Vo
ck, T
Yo (F +K,T)
The steady state value, can be obtained by substitution of these values into theessipn forF reported in
Appendix A.

5
8

Appendix C: The Determinant of J and Dockner (1985) Theonma 3

The determinant ofl = k k, T(r+ k)(r+ k,T) >0. Theorem 3 of Dockner (1985) gives conditions under which the

four eigenvalues of are real with two positive and two negative, thus eénguhe saddle point property of the
solution to (14)-(17). Assuming K<0, Dockner’s equation (20) be rearranged, as in Tahvonen (1991), so that the

condition isK > —4det( )= OwhereK is defined as

ar\}l/ar\l1 ari.ll/azl1 0N2/0 N, aNZ/a N21+26 '.Nl/a N, a'.r\yazl
0A, /0N, 0A,/0A,| [04,/0N, 0A,/0A, 04 /0N, 04 /04
K =-k?-rk —rk,T-(k,T)><0,and K?-4det( )= -k, TY(k+r+kTyY>0, so that the condition in
Theorem 3 is satisfied and the solution to the sy&esmsaddle point.

+

J‘. It can be shown that in this case,
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Appendix D: Derivation of the Explicit Solution

Using Mathematica 5.0we find the negative eigenvaluesiadre defined as, = —k,T, r, = —k,. Using these values
to define the eigenvectong as those vectors that satisfy'=rv', we find that the two (linearly independent)
eigenvectors of the system ave=(0 1 0 0 andv?®=(1 pk /(-k +kT) 0 0) . Substitute these values

into the general solutiom(t; X, ,X,,A) =X, +cv'e' + cv? € to obtain the solutions in terms of the constants
andc,. Using the initial conditionsl,,=0 fori=1,2, the first two equations of the system can besdaht time=0 to

. k o . .
obtain ¢, = (N, — N,,) —ﬁ( N,, — N andc, =(N,,— N,,). Substitution yields the results reported in (19) -
(22).



Figure 1: Schematic of the Nutrient Cycle
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Figure 2: Optimal Trajectories and Non-Negativity Constraint
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Figure 3: Optimal Fertilization Schedules Over Time
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Table 1: Comparative Statics of the Steady State

Variable

N 1oo N 200 z 1oo z 20 F )
p + + 0 0 +
c - - + + -
r - - - - -
b + + 0 0 +
d - - 0 0 -
T + +/- + + +
H - - 0 0 -
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Notes

! The authors argue that due to the chemistry of soésntdel can be written in terms of carbon pools usiegfi
C:N ratios for each pool. However, in the interestsimiplicity, the analysis is performed using N.

2 Of course, these assumptions represent a restrickecbta more general model that allows for differermiglort
rates for fertilizer and imperfect substitution betwéstilizer and indigenous nitrogen. While we recogrifde
potential for generalization, we maintain that the ienfrom the relative simplicity outweigh any potehtasts.
?In other wordsa,, =[(1-7)(1~ H)(1~ p,~ p,)~ Tk, &, = A=7)A~ H)K,T, &, = p,k, and &, = -k,T.

* We keep the solution fd¥ in terms of the state and costate variables duenplexity of the solution.

® We take here the parameters in Baisden and Amundson @0@3ir 600x16 year old soilk;=1.05,k,=.052,
ks=.0002,p,=.085,p5=.0012 5#=.061,y,,=20, T=5, H=0.5, ¢=.05, p=2, b=0.8, and d=0.01.

® There is little evidence in the literature that suspiutrient availability decreases yields; rathageiterally
implies a switching of the limiting nutrient or silari element necessary for crop growth.
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