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Abstract
Ecological systems such as shallow lakes are usually non-linear and display discontinuities and
hysteresisin their behaviour. These systemsoften a so provide conflicting servicesasaresource
and awaste sink. This implies that the economic analysis of these systems requires to solve a
non-standard optimal control problem or, in case of acommon property resource, anon-standard
differential game. Thispaper providesthe optimal management sol ution and the open-loopNash
equilibrium for adynamic economic andysisof the model for ashalow lake. It also investigates
whether it is possible to induce optimal management in case of common use of the lake, by

means of atax. Findly, some remarks are made on the feedback Nash equilibrium.
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1. Introduction

The purpose of this paper isto devel op an economic analysis of the shallow lake. Lakes have
been studied intensively and the shallow lake model is well tested and documented, so that the
analysis has a direct meaning. However, the lake model can also be viewed as ametaphor for
many of the ecological problems facing mankind today, so that the analysis developed in this
paper will have awider applicability. The economic analysisis especially challenging because
of the non-linear dynamics of the lake (which yields non-convex decision problems) and the

gaming aspects related to the common property character of the lake.

It has been observed that shallow lakes, dueto aheavy use of fertilizerson surrounding land and
an increased inflow of waste water from human settlements and industries, at some point tend
to flip from a clear state to a turbid state with a greenish look caused by a dominance of
phytoplankton (Carpenter and Cottingham, 1997; Scheffer, 1997). The rdease of nutrierts,
especially phosphorus, into thelake stimulates the growth of phytoplankton and in addition to
that, the resulting turbidity prevents light to reach the bottom of the lake so that submerged
vegetation disappears. With the vegetation many species disappear such as waterfleas which
graze on phytoplankton. It has also been observed that shallow lakes are hard to restore in the
sense that the nutrient loads have to be reduced below the level where the flip occurred before
the lake flips back to a clear state. The positive feedback through the effect on the submerged
vegetation is oneexplanation for thisso-called hysteresis effed.

Ecological systemsoften display discontinuitiesin theequilibrium states of the system over time.
A seminal paper in thisareamodel sthe sudden outbreak of aninsect, called the sprucebudworm,
and the long time it takes before the budworm density jumps back to a low number again
(Ludwig, Jonesand Holling, 1978). Technicdly, this hysteresiseffect can be modelled by anon-
linear differential equation which hasmultiple steady-stateswith separated domainsof attraction
in a certain range of the exogenous variable. Other examples of ecologcal systems with
hysteresis among which the lake model, are described in Ludwig, Walker and Holling (1997).

In the ecological literature, management of shallow lakesis mostly interpreted as preventing the



laketoflipor, if it flips, asrestoring thelakeinitsorigina state. However, this approach denies
the economics of the problem in the sense of the trade-offs between the utility of theagricultural
activities, which are responsible for the release of phosphorus, and the utility of aclear lake.
When the lake flipsto a green turbid state, the value of the ecologi cal services of the lake (e.g.
the intake of water and recreation) decreases but this situation corresponds to a high level of
agricultural activities. It depends, of course, on the relative weight attached to these welfare
componentswhether it is better to keep the lake clear or not. Note that if it is better to keep the
lake clear, itisvery costly to let the lake flip first because of the hysteresis. A second economic
issueisthat lakes are usually common property resources and therefore suffer from sub-optimal

use, in the absence of coordination.

Theliterature on thelake model israpidy increasing. Carpenter, Ludwig and Brodk (1999) focus
on hysteresisand irreversibility issues. The paper that comes closest tothisoneisby Brock and
Starrett (1999). They consider the dynamics and the optimal management of thelake and point
out the occurrence of saddle-point stabl e steady-states and Skibapoints. This paper extendstheir
analysisto Nash equilibria, for the game of common property, and to tax policies with theaim
tointernalizethe externalities (see below). Brock and de Zeeuw (2002) consider arepeated game
version of thelake model. They show that the occurrence of “bad” Nash equilibriacan in fact be
beneficial because with these points asthreatsin trigger strategies, cooperation can be sustained

for lower values of the discount factor.

In the first part of the paper, very simple welfare analysis is done on the possible steady-states
of the lake model. Relative weights are chosen such that it is optimal to manage the lake in one
of its clear states, called oligotrophic states. It is shown, however, that when thelake is shared
by more than one community, two Nash equilibriaoccur: onein an oligotrophic state and onein
adirty state, called a eutrophic gate. In the second part of the pgper, intertemporal welfareis
maximized subject to the dynamics of the lake. It is shown that in case the discount rate is low
enough, an optimal path for phosphorus loadings exists, from each initial condition of the lake,
which movesthelaketowardsits optimal steady-state. When thelakeis shared by morethan one
community, anon-linear differential game hasto be solved. The phase-diagramfor the open-loop

Nash equilibrium has three steady-states, two of which are saddle-point stable and correspond



tothe Nash equilibriafound inthefirst part of the paper. Thethird point isunstableand displays
complex dynamics. However, it is shown that a so-called Skiba point exists which splits the
possible initial conditions of the lake in an area from where the Nash equilibrium loading
trajectory will approach the oligotrophic saddle-point, and an area from where the eutrophic

saddle-point reaults.

The question arises whether it is possible, by levying a tax on the loading of phosphorus, to
induce the communitiesto follow an optimal management path. Notethat if thecommunitiesare
locked in the eutrophic Nash equilibrium, a straight path to the optimal steady-state is not
feasible dueto the hysteresis. Assuming that it is not possble to implement atime-varying tax,
the answer depends on the number of communities. Itisshownthat if the number islow enough,
a constant tax yields a Nash equilibrium path that moves towards the optimal steady-state
(although this path will not be the same as the optimal management path, of course). If the
number is high, however, more saddle-points arise again and the dynamics becomes vey
complex, so that there is no guarantee that a constant tax can induce optimal management of the

lake in the long run.

A final issueregardsthetype of Nash equilibriumemployed in theanalysis. It iswell-known that
the open-loop Nash equilibrium is not strongly time-consistent and therefore a feedback Nash
equilibriumispreferred. However, dueto the non-linear dynamics of thelake, it isvery difficult
to find afeedbadk Nash equilibrium. In the last section of the paper, some preliminary remarks
are made on thisissue. The problem isaone-dimensional infinite horizon differential game, so
that the techniques developed by Tsutsui and Mino (1990) for dynamic duopolies with sticky
prices, may apply. Thiswould implythe occurrence of multipleequilibria, possibly with welfare

levels close to optimal management. The complete analysisis left for further research.

The paper is organized as follows. Section 2 describes the shallow lake model. Section 3 is
concerned with the economics of the lake steady-states and section 4 withthe dynamic welfare
analysisof the lake. Section 4 contains the case of optima management, the open-loop Nash

equilibrium, the effect of taxes and the feedback Nash equilibrium. Section 5 concludes the
paper.



2. TheLake Mod€

Shallow lakes have been studied intensively over thelast two decades and it hasbeen shown that

the essential dynamics of the eutrophication process can bemodelled by the differential equation

P@) = L(t) - sP(t) + PO P(0)="P,, 1)

P2(f) + m?

where P isthe amount of phosphorusin algae, L istheinput of phosphorus (the “loading”), sis
therate of loss consisting of sedimentation, outflow and sequestration in other biomass, r isthe
maximum rate of internal loading and misthe anoxic level (seefor an extensivetreatment of the
lake model Carpenter and Cottingham (1997) or Scheffer (1997)). Less is known about deep
lakes but from what is known now, it can be expected that the same type of model will be
adequate. However, estimates of the parameters of this differential equation for different lakes

vary considerably, so that a widerange of possible values has to be considered.

By substituting x = P/m, a = L/r, b = sm/r and by changing the time scale to rt/m, equation (1)

can be rewritten as

(@) = a(f)- bx(i) + x;i% %(0) = x,. @)

In order to understand some of the important features of this model, suppose that the loading a
is constant. What happens depends on the value of the parameter b. If b 3 3/8, all values of
a lead to one stable steady-state (seefigure 1). If b Y%, values of a above the local maximum
of the curve of steady-staesinfigure 2 lead to one stabl e steady-state again. However, val ues of
a below thislocal maximum yield two stable steady-statesfor the differential equation (2). The
domains of attraction are determined by the unsteble steady-state in between: to theright of this
point the high stabl e steady-state results and to theleft the low one. If 2< b< 3 3/8, values of
a below thelocal minimum and above the local maximum of the curve of steady-statesin figure
3 lead to one stabl e steady-state. For values of ain between two stabl e steady-states occur egain
for the differentid equation (2), with domains of attraction divided by the unstable steady-state.



It is easy to see a hysteresis effect now for b < 3 3/8. If theloading aisgradually increased, at
first the steady-state level of phosphorus remains low: the lake remainsin an oligotrophic state
with a high level of ecological services. At a certain point, however, the lake flips to a high
steady-state level of phosphorus. To put it differently, the lake flips to a eutrophic state with a
low level of ecological services. If itisthen decided tolower theloading ain order to try to bring
the lake back to an oligotrophic state, it is not enough to reduce a just below that flip-point. If
b ishigh enough (Y2< b< 3 3/8, figure 3), it can still be done, but a has to be reduced further
until the lake flips back to an oligotrophic state. If b %4 (figure 2), however, then the lake is
trapped in high steady-state levels of phosphorus which meansthat thefirst flip isirreversible.
In that case, only a change in the parameter b (e.g., by releasing a certain type of fish and thus
changing the fauna) can restore the lake. In the sequel of the paper, it is assumed that the
parameter b = 0.6 so that the |ake digplays hysteresis but aflip to aeutrophic staeisreversible.
Furthermore, the loading a will not be exogenous anymore but subject to control. In section 3,
aisdtill constant and the trade-off is consi dered between the benefits of being ableto rel ease that
constant amount of phosphorus, on the one hand, and the resulting damage to the lake, on the

other hand. Section 4 provides afull dynamic analysis where a can change over time.

[Insert figures 1, 2, 3 about here]

3. Economic Analysis of the L ake Steady-States

Several interest groupsoperatein relaion with thelake, that was modelled in section 2. Because
the release of phosphorusintothelakeisdueto agricultural activity, famers have an interest in
being abletoincreasetheloading. Inthat way, the agricultural sector can grow without the need,
for example, to invest in new technology in order to decrease the emission-output ratio. On the
other hand, aclean lakeis preferred by fishermen, drinking water companies, other industry that
makes use of the water, and people who spend leisure timeon or along the l&ke. In general, the
lakeisused asawaste sink (for example, by farmersintheir activity as multiple non-point source
polluters) and as a resource (for example, by water utilities and recreational users). Suppose a
community or country, balancing these different interests, can agree on awelfare function of the

formIna- cx2, c> 0. Thelake has value as awaste sink for agriculture (In a), for example, and



it providesecolog cal servicesthat decreasewiththeamount of phosphorus (-cx2). The parameter
c reflects the relative weight of these welfare components. Suppose, furthermore, that the lake
is shared by n communities or countries with the same welfare function. In this section it is
assumed that the communities choose constant loadinglevelsa;, i = 1,...,n, and that the amount
of phosphorus adjustsinstantaneously toits steady-statelevel. A logarithmic functional formfor
thewelfare function is chosen, becauseit is convenient for the technicalities of the analysis and
because the optimal management outcomein terms of total loading will be independent of the
number of communities. Thisishelpful because the number of communities can bevariedwhile
the optimal management outcome as a benchmark remai nsthe same. It isassumed that the area
around the lake is large enough so that adding new communities does not |ead to crowding out:

the objectives are assumed to be additive in the number n.

Optimal management of the lake requires to solve

2
.. i: x i:
maximize lnai—ncx2 st.a-bx+ =0,a= a. (3)
: 2 : i
i=1 x“+1 i=1

Simple calculus shows that the optimal amount of phosphorus is determined by
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b

) = 0. (4)

Optimal management, of course, does not necessarily yiel d an ol igotrophic state for the lake. If
the communities attach a relatively low weight c to ecological savices, it can be optimal to
chooseaeutrophic statewithahighlevel of agricultural activities. Itiseasy to show that for large
values of ¢, the optima management problem has one maximum for an x below the flip-point.
Asthe value of cis decreased, first alocal maximum gopears for a high x whereas the global
maximum is still achieved for alow x, but for ¢ low enough (i.e.c  0.36) the global maximum
occurs for a high x beyond the fli p-point. In the sequel of the paper it i s assumed that enough
weight (i.e. ¢ = 1) is attached to the services of the lake to make it optimal to aim for an
oligotrophic state.

If ¢ = 1, equation (4) yields x* = 0.33 with total loading a* = 0.1. Note that the same level of
total loading can also lead to the eutrophic state x = 1, if the initial amourt of phosphorusisin



the upper domain of attraction (seefigure 3). A flip occurs whentotal loading isinceased to a
= 0.1021, sothat the lake is managed not far from what is calledthe“ edge of hysteresis’ (Brock,
Carpenter and Ludwig, 1997). A small mistake may causeaflip with high costs, not only directly

because of ajump to a high x but also indirectly because of the long return path.

If the communities do not cooperate in managing the lake, it is assumed a Nash equilibrium

results which requires to solve

2
.. . X
maximize lnai—cx2, i=1,..,n, st. a-bx+ > =0, a=i: a. (5)
x+1 i=1

Simple calculus shows that the Nash equilibrium level of phosphorus is determined by
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If c= 1again and if the number of communitiesn = 2, equation (6) has three solutions, two of
which correspond to aNash equilibrium. Thefirst Nash equilibriumyiel dSXNl = 0.36withtotal
loading aNl = 0.1012. The lake is still in an oligotrophic state but closer to the edge of
hysteresis However, the second Nash equilibrium yieldsan eutrophi cstatexN2 = 1.51withtotal
loading aN2 = 0.2108. Welfare under optimal management and in the oligotrophic Nash
equilibrium are comparable, but welfare in the eutrophic Nash equilibrium is much lower.
Moreover, when the communities are locked into the second Nash equilibrium and decide to
coordinate, it is much more difficult to reach the optimal management outcome, due to the
hysteresis It isnot enough to reduce total loading to 0.1. It has to be reduced to 0.0898 first, in
order to flip back to an oligotrophic state, and can then be increased to 0.1 again.

If n> 2, these numbers change of course, but it is easy to see that for al b in the range with
hysteresisand reversbility (Y2< b < 3 3/8), on which this paper focuses always two Nash
equilibriaoccur. Infact, equation (6) intersectsthe curvefor the lake steady-stateswiththe curve
described by (n/2cx)(b - 2x/(x2 + 1)2). For b in the range given above, this curve has anegative
part for xin apositive range. Furthermore, it approachesinfinity for x 0 and it approaches zero

fromaboveforx  .Increasingthe number of communitiesnimpliesthat the curveisstretched



out but the three intersection points remain, two of which are Nash equilibria.

In the next section the loading a can change over time and the amount of phosphorus does not
adjust instantaneoudly to its steady-state level but gradually according to equation (2), which
turnsthe optimal management problem into an optimal control problem and the static gameinto
adifferential game. The Nash solutions found in thissection return (approximatey) as saddle-
point stable steady-states with solution trajectories that may have to bend around the flip-point.

4. Dynamic Economic Analysis of the L ake M odel

Suppose that the problem has an infinite horizon, so that the objectives become

W, - f e P[Ina(f) - cx* (D] dt, i=1,...n, 7
0

where i > 0is the discount rate.

4.1 Optimal management

Optimal management requiresto maximize the sum of the objectives W, subject to equation (2)

witha= OaI . Thisisan optimal control problem and the maximum principleyieldsthe necessary

conditions
1 .
a® +Mf) = 0,i=1,...n, ©)
o - 2x(f)
MO = [(B+p)- W]MO + 2nex(f), 9)

with atransversality condition on the co-state € and equation (2). Using (8), equation (9) can be

rewritten asaset of identical differential equationsing;, i = 1,...,n. The sum of these equations



(or multiplication of one of them by n) yields adifferential equation in total loading a:

2x(?)

() = ~[(b+p) = Slall)  2ex(a’() (10)

The solution is given by the set of differential equations (2) and (10), and the transversality
condition. Notethat b = 0.6 (see section 2) and ¢ = 1 (see section 3). The phase-diagram in the
(x, a)-plane is drawn in figure 4a. One curve represents the steady-states for x and can be
recognized as the lake steady-states, which were discussed in sections 2 and 3. The other curve
representsthe steady-statesfor a. Its position depends on the discount ratefi. If the discount rate
islow enough (fi < 0.1), this curve intersects the first curve only once in a point that is saddle-

point stable. If the discount rateis higher, the second curve movesup, it intersectsthefirst curve
three times, and the andysis becomes similar to the analysis of the open-loop Nash equilibrium

below. It isassumed herethat the discount ratei = 0.03, which yieldsthegraphinfigureda. The
steady-staeiscloseto the static optimal management solution in section 3, and convergesto that
point when the discount rate goes to 0. The optimal solution prescribes to jump, at any initial

state of the lake, to the stable manifold and to move towards the steady-state. Given the non-
linearity of the problem, it isnot easy to obtain an analytical expression for the stable manifold
but a numerical approximation is not difficult to develop. Starting at the steady-state point, the
characteristicvector corresponding to the negative eigenval ue of the Jacobian matrix determines
the direction of the stable manifold. Working backwards from the steady-state in small steps, a
piecewiselinear approximation of the stable manifold isthen found and the approximation gets
better the smaller the stgps. With Mathematica (Wolfram, 1999), the stable and unstable
manifoldsfor the set of differential equations(2) and (10) can be drawn (seefigure 4b). Note that
the stable manifold can bereachedfromaall initial stetesxgand bendsaround the lower flip-point

(see also section 3).
[Insert figures 4a, 4b about here]

4.2 Open-loop Nash eguilibrium

The open-loop Nash equili brium (Basar and Olsder, 1982) is found by applying the maximum
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principleto each objective W, i = 1,...,n, separately (fixing g forj i) subject toequation (2)

witha= C')ai. The set of necessary conditions becomes

1
a(t)

+A(@) = 0, i=1,.m, (11)

2x(f)

A = b+ -
{0 = [(b+p) 0+ 1)

VD +2ex(2), i=1,...,n, (12)

withtransversality conditionsonthe co-statesé;, and equation (2). Using (11), equations(12) can
be rewritten as differential equationsina;, i = 1,...,n. These equations are identical and the sum

(or multiplication of one of them by n) yields adifferential equation in total loading a:

2x(0)

{D) = —[(b+ o)
a@) = -[(b+p) w017

]a(r)+2§x(t)a2(t). (13)

The open-loop Nash equilibriumisgiven by the set of differential equations(2) and(13), andthe
transversality conditions. The phase-diagram for two communitiesn= 2 (andb = 0.6,c= 1, i
= 0.03) inthe (x, a)-planeis drawn in figure 5a. The steady-state curves for x and a now have
three intersection points. The intersection points on the left and on the right are saddle-point
stable and yield possible steady-states for the Nash equilibrium in an oligotrophic and in a
eutrophic area, respectively. The intersection point in the middle is unstable with complex
eigenvalues. Again with Mathematica (Wolfram, 1999), the stable and unstable manifolds for
the set of differential equations (2) and (13) can be drawn (see figure 5b). The trgjectories of the
stable manifold curl awhile from the intersection point in the middle and then go either to the
steady-state on the left or to the steady-state on theright. It isclear that when theiinitial statex
liesto theright of the set of curls, the open-loop Nash equilibrium follows the upper trajectory
to the steady-state on theright, and when theinitial stateliesto theleft of that areg, it followsthe
lower trajectory to the steady-state onthe left. However, it ismore difficult to see what happens
in the range in between. It can be shown (Appendix A) that a state Xg exists such that for xg <
Xg the open-loop Nash equilibrium jumps to the lower trajectory and moves towards the

oligotrophicsteady-statewhereasfor Xy > Xg itjumpsto the upper trajectory and movestowards

11



the eutrophic steady-state. The point xg is called a Skiba point because it was introduced by
Skiba in an optimal growth model with a convex-concave production function (Skiba, 1978,
Brock and Malliaris, 1989).

[Insert figures 5a, 5b about here]

If n> 2, the same arguments asin section 3can be used to show that always two open-loop Nash
equilibriaoccur. Note, however, by inspection of equation (13), that thearguments do not hold
for al bintherange (Y2, 3 3/8) anymore, because of the positivediscount rate i, but only for b

+ fi< 3 3/8, which holds for the specific values chosen for b and .

Before turning to the question whether a tax can induce the communities to choose loadings
according to the optima management trgectory, it is useful to make afew general remarks on
the analysis above. First, when comparing equations (10) and (13), it isimmediately clear that
the open-loop Nash equilibrium also results under optimal management with parameter ¢/n
instead of parameter c. It isan example of apotential game where Nash equilibria can befound
by maximizing some adapted objective (Monderer and Shapley, 1996; Dechert and Brodk, 1999).
Second, it also means that dl outcomes considered here (optimal management with varying
relative weight ¢, and symmetric open-loop Nash equilibriawith fixed ¢ but varying number of
communitiesn) can betraced by solving anoptimal control problem wherethe set of differential
eguations, characterizing the solution, has a parameter c/n. This parameter can be denoted asthe
bifurcation parameter. It can be shown that in this Hamiltonian system with positive discounting
only saddle-node and heteroclinic bifurcations can occur (Wagener, 1999; Brock and Starett,
1999). Third, figure 5o contains similar dynamics as found in amodel for external economies
withmultiplesteady-states (Krugman, 1991; Matsuyama, 1991). Krugman (1991) arguesthat for
initial conditions (history) to the left and to the right of the set of spirals, the economy movesto
the left or to the right, respectively, but that for history within the set of spirals, expectations
determinewhere the economy will end up. Thisisnot an answer touncertainty but sincefor these
initial conditions either a path can be chosen that goes to the left or one that goes to theright,
something must determine where the economy will end up. In our model, however, the solution

isdriven by an objective. A full analysis of thevalue function shows that the initial conditions
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determine the outcome, so that only history matters. A Skiba point existsthat dividestheareaof
initial conditions into an area that is attracted by the steady-state onthe left and an areathat is
attracted by the steady-state on the right.

4.3 Taxes

Consider the case of achieving the unique steady-state amount of phosphorus under optimal
management by atax 6 on phosphorus loading. Under the tax scheme the objectives (7) of the

open-loop differential game change to

W, = ]e -pt [lnai(t) _ T(t)ai(f) -cx 2(l‘)] dat, i=1,...,n. (14
0

The maximum principle requires for the optimal choice of phosphorus loading at each point in
time that

L wpea@ = 0, i=1,m (15)

a(r)
In order to obtain the loading that correspondsto optimal management, it isimmediately clear
by comparing (8) to (15) that the tax onloading should be chosen such that &(t) = -&(t) + &(t).
This implies that the tax bridges the gap between the socia shadow cost of the accumulated
phosphorus &(t) and the private shadow cost of the accumul ated phosphorusé, () that causesthe
steady-state phosphorus levelsin the open-loop Nash equilibrium to exceed the (unique) steady-
state phosphorus level under optimal management. The tax rate, however, istime-dependent,
sinceit hasto equalize cooperative and non-cooperative |oading at every point intime. Although
optimal, such a tax will be very difficult to implement, since it would require a regulating
institution to continuously change the tax rate. Another, more realistic, approach would be to
chooseafixedtax rateon loading, defined such that the non-cooperative steady-state phosphorus
level under the constant tax equal sthe steady-state phosphoruslevel under optimal management.
Thistax will be called the optimal steady-state tax (OSST).

13



By comparing (9) to (16) and using (10), it is easy to see that the OSST & is given by

¢ DV D)

. ; (16)

where & is the value of the co-state and a* is total loading in the steady-state under optimal
management. Under this constant tax scheme, the gpen-loop Nash equilibrium will be given by
the set of differential equations (2) and, instead of (13),

2x(t)

i
a0 = )=

][a(t)—f—;a%t)] +25x(0a’() 17

with atransversality condition.

It iseasy to check that the steady-state (x*, a*) for the set of differential equations (2) and (10)
under optimal management is also a steady-state for the set of differential equations (2) and (17)
in the open-loop Nash equilibrium under the constant tax &°. By subgtituting a(t) = a* and & =
(n-1)/a* inthe second term between brackets of the right-hand side of equation (17), thisterm
reduces to a*/n. It is then easy to see that (x*, a*) is also a point on the curve representing the
steady-states for total | oading a in the open-loop Nash equilibrium under the OSST. However,
the rest of this curve differs from the one under optimal management.

It should be made clear that the OSST |eadsto the optimal management steady-state but the path
under the OSST that determines the transition to the steady-stateis not the same as the optimal
management path. Coincidence of the optimal management path and the regul ated path requires
to use the time-dependent tax. To put it differently, the stable manifold of the optimal
management problem is not the same as thestable manifold of the regulated problem, athough
both approach the same saddle-point. Note also that the timeof convergence to the steady-state

under the OSST will be different than under a time-dependent tax or another control scheme.

If the number of communities n = 2, the phase-diagram under the OSST in the (X, a)-planeis
drawn in figure 6a. Although this figure differs from figure 4a for optimal management, it is
gualitatively the same. It has one saddle-point and a corresponding stable manifold. Starting at
both unregulated Nash equilibrium steady-states thetwo communitieswill changetheir loadings
under the OSST and the equilibrium path will follow this stable manifold and move towardsthe

14



optimal management steady-state. Starting & the oligotrophic Nash equilibrium, thisis a short
trajectory, but starting at the eutrophic Nash equilibrium, the path has to bend around the flip-

point.

[Insert figures 6a, 6b, 6¢ about here]

Increasing the number of communitiesn, at a certain point the phase-diagram under the OSST

becomesvery complicated. From equation (17), the curve representing the steady-statesfor ais

given by
b+p)-
) (b+p) R
“ 2% (-1 (18)
265+ [+ p) - — 2
n (x2+1? na*

The denominator of the right-hand side of equation (18) iszero if andonly if

2 e p) -

n-1) x2+1)* a*

= 0. (19)

For n= 2 theleft-hand side of equation (19) ispositive, but for n> 7 equation (19) hastwo roots
which yield two vetical asymptotes for the curve given by equation (18). Nate that this
phenomenon occurs because the term between bracketsis partly negative which is caused by the
specific choice of b and i (see also section 4.2). Moreover, if n goes to infinity, the curve
approaches a = a*, but this convergence is not uniform, due to the two discontinuities. An
exampleof such aphase-diagram under the OSST isdrawn in figure 6b wheren = 10. Thiscase
still has only one saddle-point stable steady-stae. If n gets large, it is to be expected tha the
curve has more intersection pointswith thecurve representing the lake seady-staes, becauseof
the convergence to a*. Thisimplies the possibility that multiple steady-states occur under the
OSST. Anexampleisdrawnin figure 6¢c wheren = 100. This case hasthree steady-states again,
two of which are saddle-point stalde, whereas themiddle one isunstable. For alower discount
rate i and a higher number of communitiesn, it may happen that two more steady-states occur

between the asymptotes, one unstable and one saddle-point. The existence of a second steady-
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state characterized by saddle-point stability leads to the conclusion that if the number of
communities n is high, the optimal steady-state tax may not work. Depending on the initial
conditions, the OSST may direct the equilibrium path towards a steady-state with a higher
phosphorus level than in the optimal management steady-state.

4.4 Feedback Nash eguilibrium

Theopen-loop Nash equilibriumisweakly time-consistent but not strongly time-consi stent which
implies that the equilibrium is not robust against unexpected changes in the gate of the lake
(Basar, 1989). To obtain an equilibrium with the Markov perfect property, the feedback Nash
equilibrium has to be found which means that the Hamilton-Jacobi-Bellman equation for the
game hasto be solved. Thisisadifficult problembecauseitisnot clear what the value function

will look like due to the complexity of the lake model.

Inalinear-quadratic framework with quadratic valuefunctions, the solution would be anal ytically
tractable. In aproblem like the one under consideration, one would expect that the steady-stae
amount of phosphorus and total loadings will be higher in the feedback Nash equilibrium than
in the open-loop Nash equilibrium. Thiswould confirm the intuition derived in similar type of
problems(van der Ploeg and de Zeeuw, 1992). If acommunity knowsthat the other communities
will respond to a higher amount of phosphorus in the lake with lower loadings, it loads moreat
the margin because|oading will be partly offset by the reactions of the other communities. Since
all communitiesargueinthisway, total loading inthefeedback equilibriumishighe thanin case
the loadings are not conditioned on the state of the |ake as in the open-loop Nash equilibrium.
However, Tsutsui and Mino (1990) have shown, for adynamic duopoly model with sticky prices,
that non-quadratic valuefunctionsexist that solve the Hamilton-Jacobi-BelIman equation. From
thisit followsthat multiplefeedback Nash equilibriaexist. Theresulting set of steady-state prices
lies near to the price under full cooperation or collusion. It impliesthat feedback Nash equilibria
exist with steady-state prices that are better for the duopoly than the steady-state price in the
open-loop Nash equilibrium. This technique was applied to the international pollution control

model by Dockner and Long (1993) to show that (non-linear) feedback equilibriaexist that yield

lower steady-state stocks of pollution than the open-loop equilibrium. Since the characteristics
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of those problems (infinite horizon and a one-dimensional state) are the same as for the lake
problem, one may expect that the same technique can beapplied here. In this section afew steps

will be taken but afull analysisis|eft for further research.

Suppose that the loading strategies in the (symmetric) feedback Nash equilibrium are gven by
a; = h(x),i = 1,...,n. TheHamilton-Jacobi-Bellman equation (or dynamic programmingequation)

for community i, i = 1,..,n, becomes
x2
pV(x) = max[lna,- cx?+ V.(®)la,+ (n- Dh(x) - bx + 11, (20)
x“+1
where V denotes the va ue function, that isthe samefor each community.
The first-order condition yields
1o v = a = nw - —L. 21)
a, * ! V. (x)
Substitution of (21) into (20) leadsto
PY) = Inh(x) - ex® - —[ah(e) - by + 5], @)
h(x) x2+1

and differentiation of (22) with respect to x, using (21) again, leads to

/ / 2
P P® e PO g X g, L X

W e el R e lp @3
Rewriting (23) yields an ordinary differential equation in the f eedback loading h(x):
B@IHe) - b + —E— ]+ h[(p + b) - 2exh() - —2—] = 0. (24)
x2+1 (x2+ 1)

If the resulting steady-state xF were known, equation (2) with total loading a = nh(x) gives a
boundary condition for the differential equation (24):

xF2

xF2+1

hxT) = %[bxF— 1, (25)
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so that the differential equation can be solved. However, thissteady-stateisadegree of freedom.
Thismeansthat it isto be expected that multiple feedback Nash equilibriaexist. If that steady-
stateischosen tobe equal to the steady-state under optimal management, it mayyield afeedback
Nash equilibrium that sustains the optimal management outcome in steady-state. Note that this
doesnot imply that the sametrajectory to the steady-stateisfollowed welfarewill generally ill
be different. However, itisto be expected tha afeedback Nash equilibrium exists that is better
than the open-loop one. How can thisresult be reconciled with the intuition described above and
the conclusion that the feedback Nash equilibrium is worse than the open-loop one? Note that
the analysisabove was restricted to quadratic val ue functionsin alinear-quadratic framework so
that linear controls result. It seems that by enlarging the strategy spaces to non-linear controls
(with non-quadratic value functions), equilibria arise that are better. Thismay be recognized as
atype of folk-theorem in differential games. Further research is needed to be able to give full

answers to theseissues.

5. Conclusion

Economics of ecological systemsis a much neglected area in the literature. Furthermore, the
complex dynamicsof these systems and the common property aspect of the ecological services
asresourceand waste sink, present interesting chdlengestoeconomictheory. Thispaper focuses
on the shallow lake, as an example but also because much is known about shallow lakesin the
ecological literature. However, the analysisin this paper appliesto all modelsthat are driven by
convex-concaverelations, and model swith thisfeature are verytypical formathematical modds

in ecology (see Murray, 1989).

Internal loading of phosphorus in shallow lakes causes the lake modd to be non-linear, with
hysteresiseffectsin the more interesting cases. As aconsequence, even if optimal management
of thelake hasonly one steady-state with saddle-point stability, either aninaeasein the discount
rate or an increase in the number of communities, sharing the lake, leads to more saddle-points
and complicated dynamicsin between. However, aSkibapoint exists, which meansthat inthese
casestheinitial level of accumulated phosphorus determines whether the lake will end up in a

clear or aturbid state. For a small number of communities, a constant tax on the loading of
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phosphorus can induce optimal behaviour and areturnto aclea state, but for alarge number this
policy may not work. The analysisemploysthe open- oop Nash equilibrium to characterize non-
cooperative behaviour. The feedback Nash equilibrium would be more appropriate but is very
difficulttoidentify for these type of problems. Somefirst stepsaregiven but afull analysisisleft

for further research.
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Appendix A: The Skiba point

Asalso noted later inthe main text, the open-loop Nash equilibrium resultsfrom maximizing the

welfare objective (a potential function)

w = ]e p [i: Inar) - cx ()] dt.
A i-1

What followsis strongly based on Wagener (1999).

Define the Hamiltonian function

H=e _ptg(xaala“:an) + uf(xsalr-:an):

where

gx.a,.,a,) = i:lnai—cxz, fx,a,,...a,) = i:ai—bx+
i1

i=1

and define the current value Hamiltonian function

H = g(x,a,...a,) + Mx,a,,...a,), A=e”p.

2

x2+1

b

(A1)

(A2)

(A3)

(A4)

The maximum principle yields the necessary conditions (8), (9) and (2) with the parameter ¢

replaced by ¢/n, which then yields the set of differential equations (2) and (13) for the open-loop

Nash equilibrium with the phase-diagram given in figure 5a and the gable and unstable
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manifoldsin figure 5b.

Denote the x-coordinate of the oligotrophic steady-state asx4 and of the eutrophic steady-state
as x4, and denote the range with curlsas [x5, Xg], where X, and x5 are the x-coordinates of the
intersection points of the outer upper curl and the outer lower curl with the curve representing
the steady-states for x (f = 0), respectively.

Along trajectories, it holds that

dH _ 0Hdx OHdn O0H _ OHOH OHOH 0H _

@ " ovad ondi or owon owor o - PE (A9)
It follows that
H(0) = H(0) = —f—dt - fpe “Pgdt = pW. (AB)
Furthermore,
.k id—”l( . %[%—i[ﬂf(p%-%—i]]% .Y (A7)
Condition (8) yields
A = —al, =L, = A= =1 (a=§1:ai). (A8)

The proof of the existence of a unique Skiba point takes four steps.

1) Suppose theiinitial condition xg isin theinterior of the range [X5, X3].

It is better to jump immediately to the upper trgjectory instead of to the same trgectory some
point earlier, or to the lower trgjectory instead of to the same tragjectory some point earlier,

because the welfare difference

f%”dxzfmx=f—gdx<o. (A9)

2) Supposetheinitial conditionisx,. Thechoiceiseither tojumpto the upper trajectory and start
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at the intersection point with f = 0 or to jump to thel ower trgectory, by a proper choice of intial

loadings a. Because

ow 10H 1 ) 1 1 1n3
_  —_— = — _— +)\‘ = — —_— = —_——
da pda pia aai(g /) pg a,,"’f > azf (A10)

and f < 0 below the intersection point, the welfare difference between the upper tragjectory and
the lower trgjedory is negative, so that it is better to jump to the lower trajectory at xo.

3) Supposetheinitial conditionisxg. Thechoiceiseither tojumptothelower trajectory and start
at the intersection point with f = 0 or to jump to the upper trgectory. Because above the
intersection point f > 0, it follows from equation (A 10) that the welfare difference between the
upper trgjectory and the lower trgectory is positive, so that it is better to jump to the upper
trajectory at X3.

4) Compare now the upper trgjectory leading to steady-state on theright, with co-state &, and
the lower trgjectory leading to the steady-state on the left, with co-state €;. Denote the welfare
difference asAW. Using the results in steps 2-3 and equations (A7)-(A8), it follows that

AW(x,) < 0, AW(x,) > 0, %AW = A=k > 0. (AL1)

From (A11) it follows that a point Xxgin the interior of the range [X5, Xg] exists, such that

AW(xy) = 0; AW(x) < 0, x€ [x,),x0); AW(x) > 0, x€ (xg,x,]. (A12)
The point xgis called a Skiba point and (A12) implies that if the initial anount of phosphorus
Xg is on the left-hand side of the Skiba point, the equilibrium jumps to the lower trajectory and
moves towards the steady-state on the I eft and if the initid amount of phosphorus x is on the

right-hand side of the Skiba point, the equilibrium jumps to the upper trgjectory and moves
towards the steady-state on the right.
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