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Abstract

In this paper, our concern is the design of dynamic taxes in a con-
text of non-point source, stock and endogenous externality. Particular
taxation schemes have been proposed to address informational issues
linked to the non-point source nature of numerous externalities. These
are mostly static and consequently unadapted to the management of
non-point source pollution which accumulates over time, as is the case
with waterlogging in most semi-arid regions of the world. We use a
differential game approach to study dynamic taxes, namely an input
tax and an ambient tax. We show that it is possible to design optimal
taxation schemes.

keywords: waterlogging, non-point source pollution, stock exter-
nality, input tax, ambient tax.

1 Introduction

Our aim is to study a situation combining two notions underlying the most
pressing environmental problems, namely stock externality and non-point
source pollution. In irrigated districts in Australia, as in most semi-arid
regions of the world, over-irrigation has lead to the appearance of water-
logging, defined as the rising of the water table over time that leads to the
soaking of soils, impeding agricultural production. In this regard, one might
consider the water applied in excess of irrigation as a stock pollutant, which
accumulates in the underground hydrological system and causes damage to
production. Also, the generation of excess water has some characteristics
that allow considering it as a non-point source pollution. Indeed, it involves
a great number of irrigators and the mechanisms at stake during the perco-
lation of water are stochastic. This means that individual emissions (here,
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contributions to the watertable rise) are not observable at a reasonable cost.
Another interesting characteristic of this situation is the endogenous nature
of the externality. Indeed, in standard non-point source or stock pollution
problems, the externality does not affect the polluters but some third parties
[3]. In the context of waterlogging, the rising of the water-table, resulting
from individual irrigation decisions of the agents, has an adverse effect on
the production of all the irrigators. The endogenization of the externality
induces agents to partially internalize the adverse effect, as they are directly
affected by it; it also induces strategic interaction among the agents, as in
Cochard et al. [3].

Our purpose is to find optimal taxation schemes to correct the inefficient
resource allocation resulting from irrigation decisions by non cooperative
agents.

Stock externalities are characterised by the fact that, if their generation
is a flow variable at any given time, their impact is a stock variable at the
time of the evaluation [16]. Consequently, an analysis of this special cate-
gory of externalities should not ignore their inherent dynamic characteristics.
Stock externalities are of particular relevance in the study of the most strin-
gent environmental problems, such as climate change [11], acid rains [10]
or, in semi-arid countries, waterlogging and its twin menace, salinity [4]. A
stream of literature has developed around the issue of taxing agents in the
context of stock point-source pollution [9][1]. Benchekroun and van Long [1]
analyse a linear Markov perfect tax rule, developed by Karp and Livernois
[9] for a monopoly exploiting a non-renewable resource, in the context of
a polluting oligopoly. This taxation scheme sends to polluters the message
that the more they pollute now, the higher their tax liability will be in the
future. Benchekroun and van Long [1] show that there is a taxation scheme,
independent of time, that induces the agents to attain the optimal pollution
and production paths. This tax is linear in the firm’s output, and its rate is
dependant on the stock of pollution.

Informational issues are at the core of non-point source externalities
analysis. When the regulator cannot observe individual emissions of pollu-
tion, because the polluters are numerous and spatially distributed, and/or
because of stochastic issues related to the pollutant transport, she cannot
penalise each polluter at the pro rata of his contribution to the total pol-
lution. The regulator should change perspective in looking for a basis for
taxation. Candidates for compliance bases have to be observable, enforce-
able and targetable in space and time [2]. They include inputs correlated
with pollution flows and ambient pollution. Most non-point source pollution
analyses do not take account of the cumulative process of pollutants and re-
strict to static settings [5][12][13]. Dynamic analyses of non-point source
pollution taxation include [8][14].
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Inputs-based instruments have long been considered as potential substi-
tutes to direct taxation on negative externalities [13]. Griffin and Bromley
[5] first proposed to apply an input tax in the context of non-point source
pollution. An efficient input taxation scheme is highly demanding in infor-
mation. On the one hand, the regulator is supposed to be able to identify
with certainty all the inputs contributing to the generation of the pollu-
tion. On the other hand, the incitation being farm-specific, the regulator is
supposed to have access to each firm-type, reflecting the differentiation of en-
vironmental impacts according to parameters such as the nature of the soils.
We circumvent these informational issues by developing a simple model in
which the only input contributing to pollution is water, and farms are ho-
mogenous by respect to pollution generation. The informational burden is
thus reduced. In this context, an adaptation of Benchekroun and van Long
[1]’s taxation framework is proposed, based on inputs rather than emissions.

Another way to circumvent the unobservability of emissions is to address
non-point source pollution as a group moral hazard problem. Segerson [12],
following Holmstrom’s [6] analysis of moral hazard in production teams, pro-
posed a method of regulating non-point source pollution, by charging each
firm a unit tax based on the aggregate level of pollution. Supposing that the
regulator has defined a pollution target, the scheme is such that each firm
pays a tax from the moment that the target is not attained, which happens
when a single agent deviates. A well-understood limitation to this solution
is that polluters have to recognize that their individual emissions have a
significant impact on ambient pollution. In some non-point source pollution
contexts, it is not reasonable to assume so, for instance when considering
exhaust fumes. However, non-point source pollution is often related to pol-
lution of waterbodies. In this case, the scale of analysis allows reducing the
number of agents under consideration. In the context of waterlogging, the
analysis is driven by hydrological relevance, and agents under consideration
are those located above the watertable. Being aware of their contribution
to the level of pollution, and consequently to the level of taxation, agents
behave strategically between them and with the regulator. They are incited
to reduce their individual discharges in reaction to a tax which is not per-
ceived as fixed, but dependant on their irrigation decisions. Karp [8] and
Xepapadeas [14] have developed ambient taxes in a dynamic setting. Karp
[8] considers the case of a flow pollutant, and designs an optimal dynamic
taxation scheme, based on aggregate emissions. Xepapadeas [14] explicitly
takes into account the dynamic process of pollutant accumulation, thus the
inherent stock nature of most non-point source pollutions. In both contexts
of certainty and environmental uncertainty about the natural decay rate, he
analyses the design of intertemporal incentive scheme for the management
of a non-point source stock pollution. He shows that an efficient scheme
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takes the form of a charge per unit deviation between desired and observed
pollution accumulation paths, a kind of analogue to the taxation scheme
developed by Segerson [12] in a static setting.

Developing a simple model of waterlogging, we propose to study the tax-
ation frameworks addressed above. First, we apply the taxation concept of
Benchekroun and van Long [1] to non-point source pollution. We develop
an input tax, linear in the agents’ input use, and dependant on the stock of
pollution. Then, we apply the ambient tax analysed by Xepapadeas [14] to
the particular setting of waterlogging.

Section 2 presents the model, and analyses cooperative and non-cooperative
outcomes. Section 3 analyzes a dynamic input tax. Section 4 develops an
ambient tax. Section 5 concludes.

2 The basic model

2.1 Model description

Consider n agents, indexed by i, that produce a homogeneous good from a
unique input. Let ui be agent i’s use of the input, irrigation water in our
example. The totality of the applied water is not used by plants; some water
percolates to reach the watertable where it accumulates. This percolation
water, the pollution ei that each agent emits, is a function of the quantity
of input that has been used: ei = θui

1 where θ is a percolation parameter.
In order to simplify the notations, by an appropriate choice of units we can
set θ = 1. If ei is a flow variable at each t, the impact of pollution, namely
its accumulation over time X, is a stock variable at the time of evaluation.
The accumulation of the pollutant is described by the following differential
equation, where δ > 0 is a natural discharge rate 2:

Ẋ =
∑

i

ui − δX (1)

X(0) = X0 > 0 (2)

We consider that the agents are homogeneous and all discount rates are
equal. The benefit of any agent at each instant of time can be written as a

1This simplification is of course very restrictive, as it does not allow taking account of
the heterogeneity of transfer coefficients between agents. Furthermore, it implies that the
relationship between applied inputs and pollution reaching the stock is determinist. See
[2] for an analysis of these questions

2We suppose in the first place that δ is an exogenously defined parameter. Indeed, we
could consider giving a more complex definition to the discharge rate, for instance δ(X).
This specification would more in compliance with hydrological models.
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function of its input and of the stock of pollution: F (ui, X), with ∂F
∂ui

> 0 and
∂F
∂X < 0. This characterizes the endogenous nature of the externality. In the
remainder of this paper, we will often have recourse to a quadratic expression
of the benefit function, to facilitate the resolution of some problems. We will
consider the following linear quadratic benefit function :

F (ui, X) = a + bui −
c

2
ui

2 − d

2
X2

where a, b, c, d are positive parameters.

We chose to express the benefit function in a separable form, with inde-
pendence between the terms in ui and X, by convenience. We assume that
the totality of the damages are captured by the endogenous externality, in
other words consumers are not affected by the pollution stock.

2.2 Cooperative outcome

When external effects are fully internalised, the optimal provision of a stock
externality is a cooperative solution involving all agents. We compare this
solution to the non cooperative outcomes, either in the open loop or the
feedback formulation.

Cooperative agents jointly maximise their benefits.

max
u1,...,un

V =
∫ ∞

0

∑
i

F (ui, X)e−rtdt

subject to (1) and (2), where r denotes the agents’ discount rate.

The current value Hamiltonian is:

HC(ui, X, λ∗) = nF (ui, X) + λ∗(nui − δX)

where λ∗ is interpreted as the dynamic shadow cost of pollutant concen-
tration.

The necessary conditions for optimality are:

λ∗ = − ∂F

∂ui
(3)

λ̇∗ = (r + δ)λ∗ − n
∂F

∂X
(4)

along with (2) and the transversality condition : lim
t→∞

e−rtλ∗(t)X(t) = 0

5



Optimal steady state

The optimal steady state is characterized by the following equations,
obtained by setting λ̇∗ = Ẋ = 0:

u∗∞ =
δ

n
X∗
∞ (5)

where X∗
∞ follows the relation:

∂F

∂ui
(u∗∞, X∗

∞) = −λ∗∞ = − n

r + δ

∂F

∂X
(u∗∞, X∗

∞) (6)

Thus, at the steady state, the valuation of the individual marginal ben-
efit is equal to the present value of the stream of marginal adverse effect on
group production.

With the quadratic expression of the benefit function, the optimal steady
state is given by:

X∗
∞ =

nb(r + δ)
cδ(r + δ) + n2d

(7)

u∗∞ =
δ

n
X∗
∞ =

δb(r + δ)
cδ(r + δ) + n2d

(8)

λ∗∞ = − nd

r + δ
X∗
∞ = − n2db

cδ(r + δ) + n2d
< 0 (9)

Optimal stock path

It can be shown that the optimal stock path X∗(t) is the following:

X∗(t) = (X0 −X∗
∞)eρt + X∗

∞ (10)

and consequently the input use optimal path is:

u∗i (t) =
X∗(t)(δ + ρ)− ρX∗

∞
n

(11)

where ρ is a negative root of the quadratic equation:

ρ2 − rρ − [
n2d

c
+ δ(r + δ)] = 0 (12)
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2.3 Non cooperative outcomes

We carry out our analysis in the context of an n-player non cooperative
dynamic game. The strategy of the players, defined as a time path {ui(t)},
will depend on their informational structures.

An open-loop informational structure refers to a situation where the
agents’ decisions at t depend on t and the initial level of the stock. Result-
ing open-loop Nash equilibrium (OLNE) correspond to an infinite period
of commitment : agents commit themselves to a particular emission path
and do not respond to observed variations of the state variable. OLNE are
questioned for being unrealistic. However, they constitute a ”benchmark for
discussing the effects of strategic incentives in the closed-loop information
structure” 3.

A feedback informational structure denotes a situation where decisions
are conditioned upon t and the current state of the stock. Feedback Nash
equilibria (FBNE) allow studying strategic interaction between agents, as
each knows that the others will react in function of the level of the stock. Ex-
pectations of the others’ reaction can be expressed in various ways. Among
Feedback strategies, we consider a particular linear Markov strategy.

Open loop case

max
ui

Vi =
∫ ∞

0
F (ui, X).e−rt.dt subject to (1) and (2).

The current value Hamiltonian for non cooperative agents is:

HNo(ui, X, λN ) = F (ui, X) + λN (ui +
∑
j 6=i

uj − δX)

The necessary conditions for this problem are:

λN = − ∂F

∂ui
(13)

λ̇N = (r + δ)λN − ∂F

∂X
(14)

along with (2) and the transversality condition : lim
t−→∞

e−rtλN (t)X(t) = 0

Steady state
The steady state for non cooperative agents is characterized by the fol-

lowing equations:

uNo
∞ =

δ

n
XNo
∞ (15)

3Fudenberg and Tirole (1991). Game Theory. Cambridge (USA), MIT Press. p. 131
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where XNo
∞ follows the relation:

− ∂F

∂ui
(uNo
∞ , XNo

∞ ) = λNo
∞ =

1
r + δ

∂F

∂X
(uNo
∞ , XNo

∞ ) (16)

Using the quadratic expression of F , we obtain the steady state stock:

XNo
∞ =

nb(r + δ)
cδ(r + δ) + nd

(17)

Thus, at the steady state, the valuation of the individual marginal ben-
efit by non cooperative agents is equal to the present value of the stream of
marginal adverse effect on his own production. The shadow cost of pollution
accumulation perceived by non cooperative agents is lower than the social
one : |λN

∞| < |λ∗|. Consequently, the optimal steady state is not attained.
However, agents operate a partial internalisation of the externality, because
it directly affects their benefit function.

Feedback case

Following Xepapadeas [14] [15] we assume that the conjuncture function
of each agent about the emission decisions of the others is of the following
form : uj = ũj + βX where β < 0. This is a reasonable understanding of
the situation faced by farmers in irrigation salinity prone areas: the higher
the watertable, the less they irrigate. Such a formulation supposes that all
agents react to the level of the stock in a similar way.

The current value Hamiltonian for non cooperative agents is:

HNf (ui, X, µN ) = F (ui, X) + µN [ui +
∑
j 6=i

(ũj + βX)− δX]

The necessary conditions are unchanged, except for the dynamics of the
shadow cost of pollution :

µ̇N = [(r + δ)− β(n − 1)]µN − ∂F

∂X
(18)

Steady state
The steady state for non cooperative agents is characterized by the following
equations:

uNf
∞ =

δ

n
XNf
∞ (19)

where XNf
∞ follows the relation:

− ∂F

∂ui
(uNf
∞ , XNf

∞ ) = µNf
∞ =

1
[(r + δ)− β(n − 1)]

∂F

∂X
(uNf
∞ , XNf

∞ ) (20)
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Using the quadratic expression of F , we obtain:

XNf
∞ =

nb[(r + δ)− β(n − 1)]
cδ[(r + δ)− β(n − 1)] + nd

(21)

µNf
∞ =

−dX∗
∞

(r + δ)− β(n − 1)
(22)

Consequently: |µ∞N | < |λ∞N | < |λ∗|. This reflects the strategic interaction
between agents following feedback strategies. Even if they partially inter-
nalize the externality, they tend to over-emit because of their expectations
that the other agents will respond to a rise in the stock by emitting less. The
shadow cost they perceive is lower than the open-loop one, and a fortiori
the social one.

In the following sections, we study different corrective taxes that induce
non cooperative agents to follow the optimal emission path. According to
the strategies followed by the agents, the taxation schemes might be differ-
ent in order to take account of the strategic interaction between agents that
appears in the feedback formulation.

3 Dynamic input tax

We develop an input tax inspired by the corrective tax in the context of
polluting oligopoly analysed by Benchekroun and van Long [1] . As we con-
sider non-point source pollution, individual emissions cannot be a base for
taxation. However, input-based intruments have been proposed to circum-
vent informational constraints inherent to non-point source problems. By
reference to [1], we propose a linear Markov input tax rule, which is lin-
ear in inputs and dependant on the current level of pollution stock only :
Ti(ui, X) = σ(X)ui. As each agent knows that his emissions contribute to
the accumulation of pollution, by way of this formulation he realizes that
his emissions will affect the future tax rate.

Agents faced to this type of tax maximize their benefits in the following

way: max
ui

Vi =
∫ ∞

0
[F (ui, X)− σ(X).ui]e−rt.dt subject to (2) and (3).

Open loop case

The current value Hamiltonian is :

HTo(ui, X, λT ) = F (ui, X)− σ(X).ui + λT (ui +
∑
j 6=i

uj − δX)
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The necessary conditions for this problem are:

λT = − ∂F

∂ui
+ σ(X) (23)

λ̇T = (r + δ)λT − ∂F

∂X
+ σ′(X)ui (24)

along with (2) and the transversality condition : lim
t−→∞

e−rtλT (t)X(t) = 0

In order to identify the optimal input tax, we compare the first-order
conditions for cooperative agents to the ones we have just obtained. From
(3) and (23), we get:

λT = λ∗ + σ(X) (25)

Deriving this expression:

λ̇T = λ̇∗ + σ′(X)Ẋ (26)

Combining (4) and (26) we obtain:

σ′(X)[δX − (n − 1)ui] + σ(X)(r + δ) + (n − 1)
∂F

∂X
= 0 (27)

Quadratic case
In order to resolve this first order linear differential equation in σ(X),

we have recourse to the quadratic formulation of the problem. We suppose
that the solution is of the following form: σ(X) = AX + B. We replace
σ(X) by AX + B and σ′(X) by A in (27). Since the differential equation
must hold for all X > 0, we collect the terms in X and equal their sum to
zero. This gives A. We use this to express B from the rest of the terms that
do not depend on X.

We find that the optimal input tax is : σ(X) = AoX + Bo with

Ao =
(n − 1)d

r + ρ1−n
n + δ n+1

n

≥ 0 (28)

Bo = −ρ(n − 1)X∗
∞

n(r + δ)
Ao ≥ 0 (29)

The taxation framework we obtain consists of two parts : a component
independent of the stock, Bo, and a stock-induced component, AoX. Both
Ao and Bo are positive when n > 1 and equal to 0 when n = 1. Thus, this
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scheme consists only of a tax 4. Such a tax tells the polluters that, as their
emissions affect the stock, the more they use inputs now, the higher their
tax liability will be in the future. Even if their current input use corresponds
to optimality, the level of the tax is conditioned upon the current state of
the stock, affected by their past actions.

Feedback case

The resolution mechanism is the same as for open-loop strategies. The
optimal input tax is of similar form as in the open loop case, but with
different parameter values. Using the quadratic formulation of the benefit
function, the parameters of the optimal tax are :

Af =
(n − 1)d

r + ρ1−n
n + δ n+1

n − β(n − 1)
≥ 0 (30)

Bf = −ρ(n − 1)X∗Af + λ∗β(n − 1)
n(r + δ)

≥ 0 (31)

Again, the incentive framework consists only of a tax. We notice that
Bo < Bf and Ao > Af . This means that at low levels of the pollution stock,
feedback strategies are punished more heavily than open-loop ones, by way
of the higher stock-independent term. On the contrary, high levels of the
stock are more taxed for open-loop strategies, because the stock-induced pa-
rameter is higher. Intuitively, the idea is that in the feedback formulation,
agents are incited to pollute more now. Indeed, as seen before, they ought
to pollute more now as they expect others to lower their emissions as a re-
sponse to the increase in the stock. This is due to the particular formulation
of the feedback strategy we use; indeed emissions are considered as strategic
substitutes [14]. A high fixed tax parameter could be a way to induce agents
following feedback strategies to lower their emissions from the beginning of
the game.

A comparison of the incentive frameworks for open-loop and feedback
strategies shows that the informational issues that the regulator has to deal
with are not reduced to the standard informational asymmetries that char-
acterize non-point source problems; she also needs to know which strategy
is followed by the agents to design the optimal taxation scheme.

4Benchekroun and Van Long studied the case of an oligopoly; a surprising result of their
study is that it might be optimal to subsidize polluters even if their laissez faire output is
higher than the social one; indeed olipoly tend to underemit due to market power. In our
study, market power are not an issue.
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Our model does not allow addressing informationnal issues related to
input taxes. When considering more realistic hypotheses, the informational
burden gets higher, encompassing transaction costs. First, we consider
homogeneous agents, which induces our input tax to be the same for ev-
ery agents. With more realistic hypotheses allowing heterogeneity between
agents, the tax would be farm-specific, thus more complex to design and
implement. Second, even if we only consider a unique input, irrigation wa-
ter, the observability of individual decisions is subject to high costs, even
when agents are organized in irrigation districts. That is why ambient pol-
lution has been proposed as a basis for regulation, as it potentially reduces
the informational burden. A measurement of pollution at some receptor
point should be enough for the regulator to design an ambient tax frame-
work. Others costs arise, such as the social cost of imposing on individuals
a penalty based on the actions of numerous agents. We focus in our analysis
on the design of an optimal ambient taxation scheme, without consideration
for such potential limitations.

4 Dynamic ambient tax

The taxation scheme we study is related to the one developped by Xepa-
padeas [14], but it allows taking account of the endogenous nature of the
externality. We design the tax so that agents are induced to follow the opti-
mal emission path, and we consider that for each t, the target is the optimal
steady state stock. This corresponds to a situation where a target has been
set by a regulatory body.

Suppose an ambient tax of the form: τ(z) with z = X(t)−X∗
∞ such that

τ
>

<
0 as z

>

<
0.

Agents’ program is : max
ui

Vi =
∫ ∞

0
[F (ui, X) − τ(z)]e−rt.dt subject to

(2) and (3).

Open loop case

The current value Hamiltonian is:

HXo(ui, X, λX) = F (ui, X)− τ(z) + λX [ui +
∑
j 6=i

uj − δX]

The necessary conditions are:

λX = − ∂F

∂ui
= λ∗ (32)
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λ̇X = (r + δ)λX − ∂F

∂X
+ τ ′(z) (33)

along with (2) and the transversality condition : lim
t→∞

e−rt = λX(t)X(t) = 0

Quadratic case
In order to define the optimal ambient tax, we develop the preceding

equation replacing X(t) and ui(t) by X∗(t) and u∗i (t) as defined in section
2. Indeed, we want non cooperative agents to follow the optimal path. In
the quadratic case, this leads to the following expression:

λ̇X = (r + δ)λ∗ + dX∗(t) + τ ′(z) = cu̇i
∗(t) (34)

Refering to (10) and (11)we have:

τ ′(z) = −[(r + δ)λ∗ − dX∗
∞] + z[

c

n
ρ(δ + ρ)− d] (35)

After integration, remembering that τ(0) = 0, this gives the following
result:

τ(z) = z[dX∗
∞ − (r + δ)λ∗] +

z2

2
[
c

n
ρ(δ + ρ)− d] (36)

which can be written as:

τ(z) = −zλ∗(r + δ) + dz(X∗
∞ − z

2
) +

z2

2
[
c

n
ρ(δ + ρ)] (37)

The first term is analogue to the efficient tax developed by Xepapadeas,
which induces agents to attain the optimal steady state.

The second term bears the endogenous externality effect. It reflects the
fact that individual agents already take into account a part of the effect
of stock accumulation in their private maximization program, they partially
internalise the external effect. Indeed, this term is negative and consequently
lowers the tax burden for agents when the externality is endogenous.

The third one induces to follow the optimal path.

With such a taxation scheme, once a deviation is measured, every agent
pays the same amount. If past emissions have caused the stock to be too
high, firms will continue to pay even if their current emissions are optimal.

Feedback case

The current value Hamiltonian becomes:

HXf (ui, X, µX) = F (ui, X)− τ(z) + µX [ui +
∑
j 6=i

(ũj + βX)− δX]
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Using the same method, we obtain the optimal ambient tax for feedback
agents:

τ(z) = −zλ∗[(r + δ)− (n − 1)β] + dz(X∗
∞ − z

2
) +

z2

2
[
c

n
ρ(δ + ρ)] (38)

The strategic interaction effect appears through the term in β. Indeed,
the resulting tax is higher than the one for the open-loop case, β being neg-
ative, as all other terms remain the same. As agents tend to over-emit in
reason of the strategic interaction that appears when they follow feedback
strategies, the taxing instrument has to be more stringent for the feedback
loop formulation.

5 Concluding remarks

We have shown that it is possible to design tax rules that guide agents linked
through an endogenous externality to achieve the socially optimal time path
of pollution accumulation and input use. We have also shown that, accord-
ing to the informational structure of the agents, the taxation framework
differs; feedback strategies are taxed more heavily than open-loop ones.

However, our model has numerous limitations. First, firms are supposed
to be homogenous, which renders the taxation frameworks quite simple; in
order to attain the first best outcome, if agents were heterogenous then the
tax rate would have to be farm-specific. Second, the non-point source nature
of the problem is simplified; the recourse to stochastic functions, in particu-
lar to link inputs to emissions, would be a more realistic assumption. Third,
we do not treat of a known limitation of ambient taxes, which is the gen-
eration of large transfers. We restrict our analysis to non-budget balancing
incentives; hence the absence of rewards of penalties at each instant in order
to equal the total amount paid by dischargers to the social cost of deviation
from the optimal path.

Our aim is to extend this analysis by considering a more realistic model of
waterlogging, by making the discharge rate a function of the level of accumu-
lation and taking account of uncertainties that contribute to the non-point
source nature of waterlogging.
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