#### **Non-renewable Resources and Economic Growth**

# The Classics versus New models of endogenous technology

#### Sjak Smulders Tilburg University

Main questions of the literature on non-renewable resource:

- How does depletion of essential non-renewable resources impose a *drag on growth*?
- How can investment in *physical capital* offset this drag on growth?
- How can investment in *new technologies* offset the resource drag?
- How does resource depletion affect the incentives to invest in capital or new technologies?

It is all about the interaction between

- Substitution
- Technological change
- Investment

#### This paper:

- How much does substitution and technological change matter for long-run growth?
- Are the old workhorse models (the 1974 classics) still relevant, once we depart from Cobb-Douglas and exogenous technological change?

# **Key Concepts**

Finite resources: cumulated extraction is bounded.

Necessary resources: no production without resource use.

Cumulative production bounded?

Not necessarily thanks to substitution and technical change.

Substitution: movements along the isoquant.



Poor substitution ( $\sigma_Y < 1$ ): minimum requirement of input factor.

Technical progress: reduces minimum requirements.

- resource augmenting
- capital augmenting

$$Y = F(A_{\kappa}K, A_{\kappa}R)$$

Growth with finite resources:

- R must steadily decline
- Offset by increases in  $A_R$  (resource-augmenting technical progress)

# What are the classics? What is hot?

|                                   | poor<br>substitution                                                                                                                | $\sigma_{\rm Y} = 1$                                                                                    | good<br>substitution |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------|
|                                   | $\sigma_{\rm Y}$ < 1                                                                                                                |                                                                                                         | $\sigma_{\rm Y} > 1$ |
|                                   | Club of Rome                                                                                                                        | Solow 1974                                                                                              |                      |
| no<br>technical<br>change         | doomsday                                                                                                                            | constant production if $\alpha_K > \alpha_R$                                                            | growth               |
|                                   |                                                                                                                                     |                                                                                                         | (resource            |
| exogenous                         | Dasgupta/Heal 1979                                                                                                                  | Stiglitz 1974                                                                                           | is not necessary)    |
| technical                         | growth if                                                                                                                           | growth if                                                                                               | ,                    |
| change                            | resource-augmenting                                                                                                                 | rate of techn                                                                                           |                      |
| ciuiige                           | techn change                                                                                                                        | change > discount                                                                                       |                      |
|                                   |                                                                                                                                     | rate                                                                                                    |                      |
| no techn<br>change<br>IRS         |                                                                                                                                     | Groth/Schou 2002<br>Groth/Schou 2003<br>growth if<br>population grows<br>sufficiently fast              |                      |
| endogenous<br>technical<br>change | André/Smulders 2004 Bretschger/Smulders 2004 This lecture!  growth if  high technolog opportunity  poor subst in traditional sector | Barbier 1999 Schou 1999 Scholz/Ziemes 1999 Grimaud/Rougé 2003  growth if high technological opportunity |                      |

## **Outline**

- 0. General model
- 1. Good substitutes (Cobb Douglas)

Only resource

Capital accumulation

optimum versus market and policies

Endogenous technology

optimum versus market and policies

#### 2. Poor substitutes

Exogenous technology

Endogenous technology

Endogenous growth

# **Notation**

Growth rate of a variable X(t) is denoted by

$$\frac{dX(t)/dt}{X} = \frac{\dot{X}}{X} = \frac{d \ln X(t)}{dt} \equiv \hat{X}(t)$$

The time index t is omitted where no confusion arises.

A technology level / knowledge stock / # of blueprints

C consumption

F production function

G knowledge accumulation function (research technology)

g balanced growth rate

K capital

L labour in production

L<sub>A</sub> labour in research

L<sup>S</sup> labour supply

n rate of population growth

m intermediates

p price

r interest rate

S resource stock

s savings rate

t time

u depletion rate

V wealth

w input price

X factor input

Y output

α production elasticity labour

β production elasticity capital

- γ elasticity of intermediates production with respect to labour input
- ε elasticity of substitution among intermediates
- $\theta_i$  production elasticity of factor i (i=K,L,R)
- η production elasticity of knowledge
- λ elasticity of research output with respect to labour input
- v production elasticity resource
- ρ utility discount rate
- σ intertemporal substitution elasticity
- $\sigma_{\rm Y}$  elastictity of substitution in production
- τ tax rate
- $\phi$  spillover parameter
- ξ research productivity

# The general model

Technology:  $Y = F(R, K, L, A_T, A_R, A_L) = C + \dot{K}$ 

Resource is necessary: F(0,K,A,L,t)=0

Resource dynamics:  $\dot{S} = -R \le 0$ ,  $S \ge 0$ 

Investment technology  $\dot{A}_i = G_i(A_i, L_{Ai})$ 

Exogenous growing factors:

Exogenous technology  $\hat{A}_i$  given

Labor  $\hat{L} = n$  given

Welfare  $W(0) = \int_{0}^{\infty} \left( \frac{1}{1 - 1/\sigma} C(t)^{1 - 1/\sigma} \right) e^{-\rho t} dt$ 

To account for population growth:

$$\rho \equiv \rho_{n=0} + (1 - 1/\sigma)n$$

# The general model



# **Concepts / Definitions**

#### 1. No-doomsday path:

Path of consumption such that consumption never falls to zero.

Since the resource is necessary, this requires

$$\int_{0}^{\infty} R(\tau) d\tau \leq S(0)$$

#### 2. Constant (per capita) consumption path

Path along which  $\hat{C} = n$ .

If in addition per capita consumption is maximum, we satisfy the Rawlsian criterion (some claim that this is *the* sustainability criterion): all generations are equally well of

$$W(0) = \max \left\{ \min \left\{ U(C(t)) \right\} \right\}$$

#### 3. Balanced growth path (BGP)

All variables grow at constant rates. A feasible BGP requires:

$$\hat{Y} = \hat{C} = \hat{K} = g$$

$$\hat{R} = \hat{S} = -u < 0$$

$$\hat{L} = \hat{L}_{Ai} = n$$

Often, a BGP arises only in the long run (after transitional dynamics).

#### 4. Optimal growth path

The path of consumption that maximizes the welfare criterion subject to the resource and technology constraints.

#### 5. Market equilibrium

The path for which all markets are in equilibrium.

#### Some notes on resource depletion

$$\dot{S} = -R \le 0$$
 with

- R resource flow  $\hat{R} < 0$  on a no-doomsday growth path
- R/S rate of depletion

$$\widehat{R/S} = \hat{R} - \hat{S} = \hat{R} - \frac{-R}{S} = \hat{R} + R/S$$

on a BGP:  $-\hat{R} = R/S > 0$  and constant (rate of depletion)

#### Notation

- g balanced growth rate
- *u* rate of extraction along the balanced growth path  $(-\hat{R} = -\hat{S} = R/S > 0)$

# **Optimal growth – General formulation**

Max 
$$W(0) = \int_{0}^{\infty} U(C(t))e^{-\rho t}dt$$
  
subject to

Technology  $\dot{K} = F(R, K, L, A_T, A_R, A_L) - C$ 

Resource dynamics:  $\dot{S} = -R \le 0$ ,  $S \ge 0$ 

Investment technology  $\dot{A}_i = G_i(A_i, L_{Ai})$ 

Labour market constraint  $L^{S} = L + \Sigma L_{Ai}$ 

# Optimality conditions:

wrt 
$$R$$
  $\rho - \hat{U}_{C} = \hat{F}_{R}$ 

wrt 
$$K$$
  $\rho - \hat{U}_c = F_K$ 

wrt 
$$L_{Ai}$$
 
$$\rho - \hat{U}_C = \frac{F_{Ai}}{F_L / G_{L_{Ai}}} + G_{Ai} + \widehat{F_L / G_{L_{Ai}}}$$

#### Interested in different specifications for

- F(.), production technology;
  - o Cobb-Douglas versus CES
  - o Cake versus Capital accumulation
  - o CRS versus IRS
- G(.), research technology,
  - o exogenous technological change
  - o semi-endogenous growth (DRS wrt A)
  - o endogenous growth (CRS wrt A)

#### Interested in

- Feasible growth
- Constant consumption path
- Optimal growth
- Market equilibrium

## **Constant elasticities – BGP Results**

Specify:

$$Y = R^{\nu} K^{\beta} L^{\alpha} A^{\eta}; \qquad \dot{A} = \xi A^{\varphi} L_{A}^{\lambda}$$

Closed form solution:

$$\hat{Y} = g = \frac{\sigma(a - \psi \rho)}{\psi + (1 - \psi)\sigma} \quad ; \qquad -\hat{R} = u = \frac{(1 - \sigma)a + \sigma \rho}{(1 - \psi)\sigma + \psi}$$

|                                                                        | Ψ                                | а                                                                |
|------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------|
| Exog. technology $\xi = 0$                                             | $\frac{v}{1-\beta}$              | $\frac{1}{1-\beta}(\eta \hat{A} + \alpha n)$                     |
| Endog. technology small spillovers $\xi > 0$ , $\varphi < 1$           | $\frac{v}{1-\beta}$              | $\frac{1}{1-\beta}(\eta \frac{\lambda n}{1-\varphi} + \alpha n)$ |
| Endog. technology large spillovers $\xi > 0$ , $\varphi = 1$ , $n = 0$ | $\frac{\alpha + \nu}{1 - \beta}$ | $\frac{1}{1-\beta}(\eta \xi L^{S})$                              |

Comparative statics (Optimal growth path).

| Variable (i)                 | Growth (g)              | Depletion (u)    |
|------------------------------|-------------------------|------------------|
| $\partial i/\partial \rho$   | $-\psi\sigma/D<0$       | $\sigma/D > 0$   |
| $\partial i/\partial \sigma$ | ψ <i>g /</i> σ <i>D</i> | $-g/\sigma D$    |
| $\partial i/\partial a$      | $\sigma/D > 0$          | $(1-\sigma)/D$   |
| $\partial i / \partial \psi$ | $-\sigma u/D < 0$       | $-u(1-\sigma)/D$ |

$$D \equiv (1 - \psi)\sigma + \psi > 0$$

#### Interested in different specifications for

- F(.), production technology;
  - o Cake versus Capital accumulation
  - o CRS versus IRS
  - o Cobb-Douglas versus CES
- G(.), research technology,
  - o exogenous technological change
  - o semi-endogenous growth (DRS wrt A)
  - o endogenous growth (CRS wrt A)

# **Cake Eating model (CE)**

Technology assumptions ( $\alpha = \beta = 0$ ):

Cake eating

$$C(t) = Y(t) = R(t)$$

$$\hat{Y} = \hat{R}$$

Cake + party

$$C(t) = Y(t) = e^{at}R(t) \qquad \qquad \hat{Y} = a + \hat{R}$$

$$\hat{Y} = a + \hat{R}$$

Cake + party + hangover

$$C(t) = Y(t) = e^{at}R(t)^{\Psi}$$
  $\hat{Y} = a + \psi \hat{R}$ 

$$\hat{Y} = a + \psi \hat{R}$$

Constant consumption path:

$$n = \hat{C} = \hat{Y} = a + \psi \hat{R} \implies -\hat{R} = \frac{a - n}{\psi} > 0$$

#### Solve optimal growth path

(i) Production function: 
$$\hat{Y} = a + \psi \hat{R}$$

(ii) Optimality condition: 
$$\rho + (1/\sigma)\hat{Y} = \hat{Y} - \hat{R}$$

Note that (ii) holds if

- Both the production and utility function are iso-elastic
- Consumption and output grow at the same rate (BG).

Closed form solution:

$$\hat{Y} = g = \frac{\sigma(a - \psi \rho)}{\psi + (1 - \psi)\sigma} \quad ; \qquad -\hat{R} = u = \frac{(1 - \sigma)a + \sigma \rho}{(1 - \psi)\sigma + \psi}$$

Comparative statics (Optimal growth path).

| Variable (i)                 | Growth (g)        | Depletion ( <i>u</i> ) |
|------------------------------|-------------------|------------------------|
| $\partial i / \partial \rho$ | $-\psi\sigma/D<0$ | $\sigma/D > 0$         |
| $\partial i/\partial \sigma$ | ψg / σD           | -g / σD                |
| $\partial i / \partial a$    | $\sigma/D > 0$    | $(1-\sigma)/D$         |
| $\partial i / \partial \psi$ | $-\sigma u/D < 0$ | $-u(1-\sigma)/D$       |

$$D \equiv (1 - \psi)\sigma + \psi > 0$$

#### **Implications**

- Optimal growth can be negative, even though positive growth is feasible (high discount rate, high resource share).
- Higher resource share implies lower growth.
- Growth is affected by preferences ("endogenous"), ...
- ... but requires exogenous technological progress.
- No transition dynamics. R(t) = uS(t)

# **Isomorphy Cake eating model**

Define

$$K_S = e^{at} S^{\Psi}$$

stock of resources measured in consumption equivalents. We then have:

$$\hat{K}_{S}$$

$$= a + \psi \hat{S}$$

$$= a + \psi \frac{-R}{S}$$

$$= a - \psi \left( \frac{C/e^{at}}{K_{S}/e^{at}} \right)^{1/\psi}$$

$$= a - \psi \left( C/K_{S} \right)^{1/\psi}$$

or

$$\dot{K}_{S} = aK_{S} - \left[ \psi \left( \frac{C}{K_{S}} \right)^{(1-\psi)/\psi} \right] C$$

Isomorphy:

$$\psi = 1$$
 AKmodel

$$\psi$$
 < 1 AK-like-model

Interesting...

- Reinterpretation in terms of endogenous growth
- Interpretation of Groth/Schou (2002) model (concavity).
- New version of AK-model (concave transformation curve).

# **Capital Accumulation (KA)**

Part of output can be turned into a durable input

$$Y = F(R, K, L, t) = R^{\nu} K^{\beta} L^{\alpha} A_{TFP}$$
  
$$\dot{K} = Y - C$$

#### Sustainable growth (KA)

Write the production function in growth rates:

$$\hat{Y} = \beta \hat{K} + \nu \hat{R} + \alpha \hat{L} + \hat{A}_{TFP}$$

Along a BGP with  $\hat{C} = \hat{Y} = \hat{K} = g$ , this boils down to:

$$\hat{Y} = \frac{v}{\underbrace{1-\beta}_{\Psi}} \hat{R} + \underbrace{\frac{\hat{A}_{TFP} + \alpha \hat{L}}{1-\beta}}_{a}$$

Back to decreasing-returns-cake-eating-model!

#### **Optimal growth (KA)**

Optimality: first order condition

$$\rho - \hat{U}_C = \hat{F}_R = F_K$$

$$\rho + (1/\sigma)\hat{C} = \hat{Y} - \hat{R} = \beta Y / K$$

First equality is the same as in the cake-eating model. Second equality is DHSS efficiency condition. Nothing changes... only reinterpretation needed.

#### Implications capital accumulation

- Savings rate no influence on long-run growth
- Capital accumulation in itself cannot drive growth ...

(because of decreasing returns:

K/L and K/S rises, so MPK falls)

...unless

• TFP growth

(Stiglity 1974)

• Population growth and IRS  $(\alpha + \beta > 1)$ 

(Groth/Schou 2002)

• IRS with respect to capital  $\beta > 1$  (but this is unstable) (Groth/Schou 2002)

# Market equilibrium (KA)

Suppose:

- CRS  $\alpha + \beta + \nu = 1$
- Property rights
- Rational expectations

... then the market equilibrium coincides with the social optimum.

Groth/Schou (2003): IRS and Marshallian externality.

# **Market Equilibrium**

#### Market prices:

 $w_L$  wage rate

 $w_R$  resource price

r interest rate

#### Next-to-simplest case:

- Price taking in all markets, but IRS.
  Requires non-IRS at firm level (merger argument).
  Marshallian externality
- Various tax instruments (τ)

#### Households

maximize utility s.t. dynamic budget constraint:

$$\max_{s.t.} W(0) = \int_{0}^{\infty} \left( \frac{1}{1 - 1/\sigma} C(t)^{1 - 1/\sigma} \right) e^{-\rho t} dt$$
  
s.t.  $\dot{V} = (1 - \tau_r) r V + w_L L^S - (1 + \tau_c) C - \tau$ 

$$\Rightarrow (1-\tau_r)r = \widehat{1+\tau_c} + \rho + (1/\sigma)\widehat{C}$$
 Keynes-Ramsey Rule

#### Resource owners

maximize NPV of resource income

$$\max \int_{0}^{\infty} w_{R}(t)R(t)\exp(-\int_{0}^{t} r(s)ds)dt$$
  
s.t.  $\dot{S}(t) = -(1+\mu)R(t)$   $\mu$ : mining cost

$$\Rightarrow r = \widehat{w_R/(1+\mu)} = \widehat{w}_R - \frac{\mu}{1+\mu}$$
 Hotelling Rule

Final goods producers maximize profits

$$AK_{i}^{\beta_{f}}L_{i}^{\alpha}R_{i}^{\nu_{f}} - r(1+\tau_{K})K_{i} - w_{L}L_{i} - w_{R}(1+\tau_{u})R_{i}$$

$$\beta_{f} + \alpha + \nu_{f} = 1$$

$$A = A_{TEP}K^{\beta-\beta_{f}}R^{-(\nu_{f}-\nu)}$$

Externality with respect to K (learning) and R (pollution). (exercise: externalities with respect to L).

$$\beta_f Y / K = r(1 + \tau_K)$$

$$vY / R = w_R(1 + \tau_R)$$

$$\alpha Y / L = w_L$$

#### **Policies**

Market equilibrium:

$$\widehat{1+\tau_C} + \rho + \frac{1}{\sigma}\widehat{C} = (1-\tau_V)\Big(\widehat{Y} - \widehat{R} - \widehat{1+\tau_R} - \widehat{1+\mu}\Big) = (1-\tau_V)\Big(\frac{\beta_f}{1+\tau_K}\Big)\frac{Y}{K}$$

cf. Optimum:

$$\rho + \frac{1}{\sigma}\hat{C} = \hat{Y} - \hat{R} - \widehat{1 + \mu} = \beta \frac{Y}{K}$$

Optimal policies:

• Internalize learning externality:

$$\beta_f/(1+\tau_K) = \beta \implies \tau_K = -(\beta - \beta_f)/\beta$$

• Internalize pollution externality:

$$v_f/(1+\tau_R) = v \implies \tau_R = (v_f - v)/v$$

Other policies:

• Sustainability policy: make society more patient

$$\widehat{1+\tau_C}$$
 < 0

• Conservation policy:

$$\widehat{1+\tau_R}<0$$

If  $\tau_V = 0$ ,  $\beta_f / (1 + \tau_K) = \beta$ , we are left with

$$\underbrace{\widehat{1+\tau_C}+\widehat{1+\tau_R}+\widehat{1+\mu}+\rho}_{\equiv \rho_\tau}+\frac{1}{\sigma}\widehat{C}=\widehat{Y}-\widehat{R}=\beta\frac{Y}{K}$$

So taxes can lower the effective discount rate. See previous comparative statics:

Lower discount rate means

- higher long-run growth rate
- lower long-run depletion rate

# **Endogenous technological change (ET)**

#### 1. Marshall/Arrow/Romer:

$$Y = R^{\nu} K^{\beta_1} L^{\alpha} A_{TFP}$$

$$\alpha + \beta_1 + \nu = 1 \qquad \Rightarrow \qquad Y = R^{\nu} K^{\beta_1 + \beta_2} L^{\alpha}$$

$$\dot{K} = Y - C \qquad \qquad \alpha + \beta_1 + \beta_1 + \nu > 1$$

$$A_{TFP} = K^{\beta_2}$$

Back to KA... back to CE...

#### 2. Two-sector model ("semi-endogenous growth")

Investment in new technology is fundamentally different from investment in physical capital:

- Innovation builds on experience and knowledge (spillovers)
- No resources needed.

Generalized Romer model (Jones 1995):

$$Y = R^{\nu} K^{\beta} L^{\alpha} A^{\eta}$$

$$\dot{K} = Y - C$$

$$\dot{A} = \xi A^{\phi} (L^{S} - L)^{\lambda}$$

 $\varphi$  knowledge spillovers ( $\varphi \le 1$  for stability)

Long run:

$$\hat{A} = \frac{\xi L_A^{\lambda}}{A^{1-\varphi}} \text{ constant if } \lambda \hat{L}_A = (1-\varphi)\hat{A} \iff \frac{\lambda n}{1-\varphi} = \hat{A}$$

Combine

$$\hat{Y} = \psi \hat{R} + a$$

$$\psi = v/(1-\beta),$$

$$a = (\hat{A}_{TFP} + \alpha n)/(1-\beta) \implies a = (\frac{\eta \lambda}{1-\phi} + \alpha)n/(1-\beta)$$

$$\rho + (1/\sigma)g = g - \hat{R}$$

Similar results as CE

- population growth drives growth,
- role of population growth more important (IRS).

Semi-endogenous growth (Jones 1995), but...

Now the discount rate affects growth (through depletion).

#### 3. Endogenous growth

As above but now  $\varphi = 1$ , n = 0 (and for simplicity  $\lambda = 1$ ):

$$\eta \xi (L^S - L)^{\lambda} = \eta \hat{A} \quad (= \hat{A}_{TFP})$$

Constant labour effort in R&D gives constant rate of technological progress!

Optimality condition

$$\rho + \frac{1}{\sigma}g = g - \hat{R} = \beta \frac{Y}{K} = \frac{\eta \xi}{\alpha} L + g$$

$$\eta L: \text{ market size}$$

$$\alpha/\xi: \text{ cost of innovation}$$

$$g: \text{ increase in the}$$
opportunity cost of innovation (wage growth)

To eliminate *L*: combine with balanced growth path

$$\eta \xi (L^{S} - L)^{\lambda} = \eta \hat{A}$$

$$g = \frac{\eta}{1 - \beta} \hat{A} + \frac{v}{1 - \beta} \hat{R}$$

$$\Rightarrow \eta \xi L = \eta \xi L^{S} - (1 - \beta)g + v \hat{R}$$

This gives four equations in four unknowns:  $g, \hat{R}, Y/K, L$ 

$$\hat{Y} = g = \frac{\sigma(a - \psi \rho)}{\psi + (1 - \psi)\sigma} \quad ; \qquad -\hat{R} = u = \frac{(1 - \sigma)a + \sigma \rho}{(1 - \psi)\sigma + \psi}$$

as before, but now:

$$\psi = \frac{\alpha + \nu}{1 - \beta} \text{ rather than } \frac{\nu}{1 - \beta}$$

$$a = \frac{\eta \xi L^{S}}{1 - \beta} \text{ rather than } \frac{\hat{A}_{TFP} + \alpha n}{1 - \beta}$$

Separate technology and preferences  $\rho + (1/\sigma)g = \xi L^{S}$ 

$$\rho + (1/\sigma)g = \xi L^{S}$$
  
$$\rho + (1/\sigma)g - g = u$$

#### **Endogenous growth – Market economy**

Crucial: modeling incentives to come up with new technologies. Appropriability problem.

Romer's solution:

- New technologies are embodied in new "capital components" (intermediates).
- Patent protection for each component
- Imperfect substitution between components

The result is monopolistic competition among the suppliers of capital components. Monopoly profits are the reward for innovation.

Tractability:

- Dixit Stiglitz approach to monopolistic competition
- symmetry among component producers
- $\varepsilon = 1/(1-\beta)$

Production: 
$$Y = K_E^{\beta} L^{\alpha} R^{\nu}$$

Services from capital: 
$$K_E = \left(\int_0^A m(k)^{(\varepsilon-1)/\varepsilon} dk\right)^{\varepsilon/(\varepsilon-1)}$$

Production of capital: 
$$K = \int_{0}^{A} m(k)dk$$

Under symmetry and  $\varepsilon = 1/(1-\beta)$ :

$$K = Am$$

$$K_E = A^{(1-\beta)/\beta} (Am) = A^{(1-\beta)/\beta} K$$

$$Y = (A^{(1-\beta)/\beta} K)^{\beta} L^{\alpha} R^{\nu} = A^{1-\beta} K^{\beta} L^{\alpha} R^{\nu}$$

Final goods producers:

$$\max_{\alpha} L^{\alpha} R^{\nu} \int_{0}^{A} m(k)^{\beta} dk - w_{L} L - w_{R} R - \int_{0}^{A} p_{m}(k) m(k) dk$$

$$vY/R = w_{R}$$

$$vY/R = w_{R}$$

$$vY/K = w_{L}$$

$$\alpha Y/K = w_{L}$$

$$\beta L^{\alpha} R^{\nu} m(k)^{\beta-1} = p_{m}(k)$$

$$\beta Y/A = p_{m} m$$

Capital producers:

max 
$$p_m(k)m(k) - rK(k)$$
  
s.t. downward sloping demand function  $p_m = r/\beta$   $\beta Y/K = r/\beta$   
 $\pi = (1-\beta)p_m m$   $\pi = (1-\beta)Y/A$ 

#### Innovation:

- Researchers invent blueprints for new components,
- sell the patent rights to use the blueprint;
- capital producers buy the blueprints (price  $p_A$ ).

A is the number of components/blueprints.

$$\dot{A} = \xi A L_A$$

Free entry in R&D: workers are willing to work as a researcher if they earn at least the opportunity wage:

$$p_A \frac{\dot{A}}{L_A} = p_A \xi A = w$$

The price of a patent is the WTP of intermediate goods producer: NPV of profits:

$$rp_A = \pi + \dot{p}_A$$

Solve for steady state

$$\frac{\pi}{p_A} = \frac{(1-\beta)\beta Y/A}{(\alpha Y/L)/\xi A} = \frac{(1-\beta)\beta}{\alpha} \xi L$$

$$\hat{p}_A = \hat{w}_L - \hat{A} = \hat{Y} - \hat{A}$$

$$r = \frac{\pi}{p_A} + \hat{p}_A = \frac{(1-\beta)\beta}{\alpha} \xi L + \hat{Y} - \hat{A}$$

Market equilibrium:

$$\rho + \frac{1}{\sigma}\hat{C} = \hat{Y} - \hat{R} = \beta^2 \frac{Y}{K} = \beta \left(\frac{1-\beta}{\alpha}\right) \xi L + \hat{Y} - \hat{A}$$

cf. optimum

$$\rho + \frac{1}{\sigma}\hat{C} = \hat{Y} - \hat{R} = \beta \frac{Y}{K} = \left(\frac{1-\beta}{\alpha}\right) \xi L + \hat{Y}$$

Growth is too low:

- Knowledge spillover (researchers firms anticipate cheaper research and wait)
- Monopoly distortion (intermediates are sold above marginal cost)

# **Poor substitution**

how to model poor substitution

$$Y = F(R_E, K, L_E, t)$$

$$\hat{Y} = \theta_R \hat{R}_E + \theta_K \hat{K} + \theta_L \hat{L}_E + (\partial F / \partial t) / F$$

$$\theta_R = \frac{\partial F(R_E, K, L_E, t)}{\partial R} \frac{R_E}{F}$$

Up to now: constant production elasticities (Cobb Douglas).

- Knife edge
- empirics
- One-drop-of-oil fairy tale
- No factor bias

# **Introducing substitution towards other production factors**

#### Poor substitution, Strict definition

Factor *i* is a poor substitute for *R* if

$$\lim_{R_E \to 0} \theta_i(R_E, K, L_E, t) = 0 \qquad i \neq R_E$$

**CES** formulation

$$Y = F(R_E, K, L_E) = \left(\nu R_E^{(\sigma_Y - 1)/\sigma_Y} + \beta K^{(\sigma_Y - 1)/\sigma} + \alpha L_E^{(\sigma_Y - 1)/\sigma_Y}\right)^{\sigma_Y/(\sigma_Y - 1)}$$

$$\theta_R = \nu (Y/R_E)^{(1-\sigma_Y)/\sigma_Y} \dots$$

$$R_E = A_R R$$

$$L_E = A_L L$$

The factors are poor substitutes if  $\sigma_{\gamma}$  < 1.

$$\lim_{R_E \to 0} \theta_R(R_E, K, L_E) = 1$$

$$\lim_{R_E \to 0} \theta_K(R_E, K, L_E) = 0$$

$$\lim_{R_E \to 0} \theta_L(R_E, K, L_E) = 0$$

Factor augmentation:

Technology determines effective resource and labor input

$$R_E = A_R R$$
$$L_E = A_L L$$

From now on: assume  $\sigma_{\gamma}$  < 1.

#### **Balanced growth**

Constant growth rate...

... requires constant production elasticities

... requires balanced input growth

$$(\hat{A}_R + \hat{R}) = \hat{K} = (\hat{A}_L + \hat{L}) = \hat{Y}$$

Back to Cake eating

$$a = \hat{A}_R \implies \hat{Y} = a + \hat{R}$$

#### **Optimal** growth

Optimality condition

$$\rho - \hat{U}_C = \hat{F}_R = F_K$$

$$\rho + \frac{1}{\sigma} \hat{C} = \frac{1}{\sigma_Y} (\hat{Y} - \hat{R}) + \left(1 - \frac{1}{\sigma_Y}\right) \hat{A}_R = \theta_K Y / K$$

(plus two conditions for the optimal investment in technology, if both  $A_R$  and  $A_L$  are endogenous).

Combine balanced growth and optimality:

$$\rho + \frac{1}{\sigma}g = \hat{A}_R = \beta \left(\frac{Y}{K}\right)^{1/\sigma_Y}$$
$$-\hat{R} = \hat{A}_R - g$$

So, if balanced growth applies,  $\sigma_Y$  no direct effect on g and u. (Maybe indirect effect if technical change is endogenous...) But balanced growth only by coincidence.

- Knife edge:
  - if technological change and population growth are exogenous, a BGP arises by coincidence only.
  - If technological change is "semi-endogenous", again BGP by coincidence only.

$$\hat{A}_i = \frac{\hat{\lambda}_i}{1 - \varphi_i} n, \quad i = R, L$$

#### **Exogenous technology**

Key result for long-run optimal growth:

$$g = \min \left\{ \sigma(\hat{A}_R - \rho), (\hat{A}_L + \hat{L}) \right\}$$

Cake versus Solow

Case i. 
$$\sigma(\hat{A}_R - \rho) = (\hat{A}_L + \hat{L})$$

Balanced growth and Cake-solutions

$$g = \sigma(\hat{A}_R - \rho) = (\hat{A}_L + \hat{L})$$
$$u = (1 - \sigma)\hat{A}_R + \sigma\rho$$

Case ii. 
$$\sigma(\hat{A}_R - \rho) < (\hat{A}_L + \hat{L})$$

Unbalanced growth and Cake-solutions

$$g = \sigma(\hat{A}_R - \rho) < (\hat{A}_L + \hat{L})$$
$$u = (1 - \sigma)\hat{A}_R + \sigma\rho$$
$$\theta_L = 0$$

Case iii. 
$$\sigma(\hat{A}_R - \rho) > (\hat{A}_L + \hat{L})$$

Unbalanced growth and Solow-solutions

$$g = (\hat{A}_L + \hat{L}) < \sigma(\hat{A}_R - \rho)$$

$$u = \left[ (1 - \sigma)\hat{A}_R + \sigma\rho \right] + \left( 1 - \frac{\sigma_Y}{\sigma} \right) \left[ \sigma(\hat{A}_R - \rho) - (\hat{A}_L + \hat{L}) \right]$$

$$\theta_R = 0$$

Empirically relevant?

# Semi-endogenous growth

$$\dot{A}_R = \xi_R (A_R)^{1-\varphi_R} (L_R)^{\lambda_R}, \quad \dot{A}_L = \xi_L (A_L)^{1-\varphi_L} (L_L)^{\lambda_L}$$

$$\dot{A}_R = \frac{\lambda_R}{1-\varphi_R} n, \qquad \dot{A}_L = \frac{\lambda_L}{1-\varphi_L} n$$

similar three cases.

# **Endogenous growth**

We need: 
$$\varphi_i = 1, n = 0 \ (i = R, L)$$

(For simplicity we assume  $\lambda_i = 1$  in addition) Optimality conditions:

$$\rho + \frac{1}{\sigma}g = g - \hat{R} = \theta_K \frac{Y}{K} = \xi_L L + g = \left(\frac{\theta_R}{\theta_L}\right) \xi_R L + g$$

Long-run solution

$$g = \sigma(\xi L^{S} - \rho)$$

$$u = \sigma \rho + (1 - \sigma)\xi L^{S}$$

$$\xi = \left(\frac{\xi_{L} \xi_{R}}{\xi_{L} + \xi_{R}}\right)$$

$$\theta_{R} / \theta_{L} = \xi_{L} / \xi_{R}$$

**Implications** 

- Elasticity of substitution does not matter (not in engine of growth).
- Scale effect.

# Directed technological change – market

Smulders and De Nooij (REE 2003) André and Smulders (wp 2004)

Main differences with above framework:

- Intermediates are flow variables (no capital stock)
- Inhouse R&D for quality improvements (no entry)

#### Challenge:

Directed technological change with market incentives

#### Solution:

Acemoglu (1998, 2002): multi-sector Romer model.

- several (two) sectors
- technological change in each sector: innovation projects improve quality or variety of the intermediates used in the sector
- each sector produces inputs for the final goods sector
- sectors differ in factor intensity: L-intensive versus R-intensive (take extreme position).
- If R-intensive sector innovates more than the L-intensive sector, innovation is resource-saving (provided substitution is poor) at the macroeconomic level.

#### Notation:

| Venice | SdN2003 | AS2004 |   |
|--------|---------|--------|---|
| γ      | 1-β     |        |   |
| A      | Q       |        |   |
| X      | S       |        |   |
|        |         | S      | E |

# Production structure (tree)

Final goods production:

$$Y = a_0 \left( Y_R^{(\sigma_F - 1)/\sigma_F} + Y_L^{(\sigma_F - 1)/\sigma_F} \right)^{\sigma_F/(\sigma_F - 1)}$$

Sectoral production: 
$$Y_R = R^{1-\gamma} K_{ER}^{\gamma}$$
;  $Y_L = L^{1-\gamma} K_{EL}^{\gamma}$ 

Services from capital: 
$$K_{Ei} = \left(\int_{0}^{1} q_{i}(k) \cdot m_{i}(k)^{1-\gamma} dk\right)^{1/(1-\gamma)}$$

Production of capital: 
$$K_i = \int_0^1 q_i(k) \cdot m_i(k) dk$$

Goods market constraint: 
$$Y = C + K_L + K_R$$

# Producer behaviour

Final goods producers

$$\max a_0 \left( Y_R^{(\sigma_F - 1)/\sigma_F} + Y_L^{(\sigma_F - 1)/\sigma_F} \right)^{\sigma_F/(\sigma_F - 1)} - p_L Y_L - p_R Y_R$$

$$\theta_L Y / Y_L = p_L$$

$$\theta_R Y / Y_R = p_R$$

Sectoral goods producers: 
$$i = L, R; \quad X_L \equiv L; \quad X_R \equiv R$$

$$\max p_i X_i^{1-\gamma} \int_0^1 q_i(k) m_i(k)^{\gamma} dk - w_i X_i - \int_0^1 p_{mi}(k) m_i(k) dk$$

$$(1-\gamma) Y_L / L = (1+\tau_L) w_L$$

$$(1-\gamma) Y_R / R = (1+\tau_R) w_R$$

$$\gamma X_i^{1-\gamma} m_i(k)^{\gamma-1} = p_{mi}(k)$$

Intermediate goods producers:

max 
$$p_{mi}(k)m_i(k) - q_i(k)K_i(k)$$
  
s.t. downward sloping demand function

$$p_{mi}(k) = q_i(k)/\gamma$$

# Static equilibrium

Consumption: 
$$C = (1 - \gamma^2)Y$$

Production: 
$$Y = \left( (A_R R)^{(\sigma_{\gamma} - 1)/\sigma_{\gamma}} + (A_L L)^{(\sigma_{\gamma} - 1)/\sigma_{\gamma}} \right)^{\sigma_{\gamma}/(\sigma_{\gamma} - 1)}$$

Substitution: 
$$\sigma_{\gamma} = \gamma + (1 - \gamma)\sigma_{F}$$

Sectoral shares: 
$$\frac{\theta_R}{\theta_L} = \left(\frac{A_R R}{A_L L}\right)^{-(1-\sigma_Y)/\sigma_Y}$$

Real energy price: 
$$\frac{w_R}{w_L} = \left(\frac{A_R}{A_L}\right)^{-(1-\sigma_Y)/\sigma_Y} \left(\frac{R}{L}\right)^{-1/\sigma_Y}$$

#### Stories to tell

#### **Stylized facts**

(US 1950-1998, see Jones 2002):

SF1 Increasing per capita energy use (R/L)SF2 Increasing energy efficiency (Y/R)SF3 Declining energy share  $(\theta_R)$ SF4 Declining real energy prices  $(w_R/w_L)$ 

Can we match the model to the stylized facts?

Are the trends suggested by the stylized facts sustainable?

#### **Policy experiment**

What are the effects of energy conservation on growth and innovation?

#### Exogenous supply, exogenous technology

Assume R/L increasing over time. Assume  $A_R$  and  $A_L$  to change over time exogenously. No investment – series of static equilibria.

Cake versus Solow (without Capital, though).

Matching stylized facts (SF2-SF4) requires:

#### Endogenous supply, exogenous technology

Needed: Hotelling and Ramsey rule

$$r = \hat{w}_R - \frac{\dot{\mu}}{1 + \mu}$$
$$r = \rho + \hat{C}$$

**Producers:** 

$$(1 - \gamma)Y_R / R = (1 + \tau_R)w_R \quad \Rightarrow \quad \hat{\theta}_R + \hat{Y} - \hat{R} = \frac{\dot{\tau}_R}{1 + \tau_R} + \hat{w}_R$$

$$C = (1 - \gamma^2)Y \qquad \Rightarrow \quad \hat{C} = \hat{Y}$$

Combining:

$$\hat{\theta}_R - \left[ \rho + \frac{\dot{\tau}_R}{1 + \tau_R} + \frac{\dot{\mu}}{1 + \mu} \right] = \hat{R}$$

To match SF1 & SF2 we need negative effective discount rate.

$$\hat{R} = -\left(\frac{\sigma_Y \rho_\tau + (1 - \theta_R)(1 - \sigma_Y)(\hat{A}_R - \hat{A}_L)}{\sigma_Y + (1 - \theta_R)(1 - \sigma_Y)}\right)$$
(20)

$$\hat{\theta}_R = -\left(\frac{(1-\theta_R)(1-\sigma_Y)}{\sigma_Y + (1-\theta_R)(1-\sigma_Y)}\right)(\hat{A}_R - \hat{A}_L - \rho_\tau)$$
(21)

#### Endogenous supply, endogenous technology

Needed: research technology and incentives.

$$\dot{q}_{ik} = [\xi_i A_i L_{Ai}^{1-\omega_i}] L_{Aik}^{\omega_i} \tag{24}$$

 $\omega_i < 1$  avoids bang-bang dynamics.

 $\varphi_i = 1$  Strong spillovers, endogenous growth

symmetry is the outcome:

$$L_{Aik} = L_{Ai} \implies \dot{A}_i = \int_0^1 \dot{q}_{ik} dk = \xi_i A_i L_{Ai}$$

To make the model even more symmetric, a second type of labour is introduced which is not used in Y production, but only in research and a second consumption good.

Intermediate goods producers in both sectors improve their own product if this is profitable.

$$r - \hat{w}_{D} = \left(\frac{(1 - \gamma)\gamma Y}{w_{D}}\right) \omega_{L} \xi_{L} \theta_{L} - \hat{A}_{L}$$

$$= \left(\frac{(1 - \gamma)\gamma Y}{w_{D}}\right) \omega_{R} \xi_{R} \theta_{R} - \hat{A}_{R}$$
(26)

Dynamic system:

$$\hat{D} = \frac{H - D}{D} \left\{ \rho + \zeta D - \zeta \left[ \omega_L - (\omega_L - \omega_R) \theta_R \right] (H - D) \right\}$$

$$\hat{\theta}_R = -\frac{(1 - \theta_R)(1 - \sigma_Y)}{\sigma_Y + (1 - \theta_R)(1 - \sigma_Y)} \left\{ (H - D) \left[ \omega_L \xi_L + \omega_R \xi_R \right] (\theta_R - \overline{\theta}) - \rho_\tau \right\}$$
(32)