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Abstract

Demand and supply analysis in fisheries often indicates the pres-
ence of instabilities and multiple equilibria, both in open access condi-
tions and in the socially optimal solution. The associated management
problems are further intensified by uncertainty on the evolution of the
resource stock or on demand conditions. In this paper the fishery
management problem is handled using robust optimal control, where
the objective is to choose a harvesting rule that will work, in the sense
of preventing instabilities and overfishing, under a range of admissible
specifications for the stock-recruitment equation. The paper derives
robust harvesting rules, leading to a unique equilibrium, which could
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1 Introduction

Demand and supply analysis in fisheries has been associated with instabil-
ities and multiple equilibria, both in the context of an open access fishery
and a socially optimal fishery.1 The source of instability is the emergence
of a backward bending supply curve which is the consequence of biological
overfishing that occurs when effort expands beyond the level corresponding
to the maximum sustainable yield. The combination of a standard downward
sloping demand curve with the backward bending supply curve can produce
an odd number of interchanging locally stable and locally unstable market
equilibria in open access fisheries. There exist locally stable equilibria corre-
sponding to high price and low harvesting, which can be seen as an indication
of overfishing. It is interesting to note that a similar picture can emerge even
in fishery that is managed in a socially optimal way. The discounted supply
curve is also backward bending for positive discount rates. As a result, there
are demand conditions under which multiple equilibria and instabilities are
present even in optimally controlled fisheries.
The problems caused by the emergence of instabilities and overfishing in

fisheries are further intensified by uncertainty, which is an important aspect
of resource economics. Uncertainty in this context can be associated with the
evolution of the resource stock2 or with demand conditions. Thus both supply
and demand shocks could disturb a locally stable fishery and lead to insta-
bilities and overfishing. As Clark (1990) points out, many stock-recruitment
relationships are poorly understood and difficult to estimate given the exist-
ing data, which in most cases is of low quality. As a result regulation based
on mispecified biological dynamics might be ineffective in achieving the de-
sired targets. This brings into the picture the issue of scientific uncertainty
and its effects on fishery management.
Our use of the term uncertainty refers to cases where the possible out-

comes are known but the decision maker is unable to assign unique probabil-
ities. The possibility of multiple prior distributions has largely been absent
from recent economic literature, although it is often a more appropriate set-
ting (seeWoodward and Bishop (1997)). Introducing an axiom of uncertainty
aversion, as in Gilboa and Schmeidler (1989), a maximin model is obtained
where the optimal choice maximizes utility for the worst probability distrib-
ution in a given set.3 In our analysis of fisheries, scientific uncertainty relates

1See for example Clark (1990).
2See for example Conrad and Clark (1988, Ch. 5), McDonald and Hanf (1992), Clark

(1990, Ch. 11), Danielson (2002), Tu andWilman (1992), Conrad (2000, Ch. 7), Weitzman
(2002), Androkovich and K.R.Stollery (1989).

3See also Roseta-Palma and Xepapadeas (forthcoming) for an application of robust
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to the stock-recruitment equation. It reflects the possibility that although
the estimated model, often referred to as the approximating or benchmark
model, is consistent with the data, there is a set of alternative models de-
scribing the evolution of the resource stock which are also consistent with
the data, and thus could be regarded as possibly true. It is important to
stress that if the benchmark model is mispecified, and resource stock evolu-
tion corresponds to a worse than expected scenario, then the optimal control
solution for the benchmark model could result in a fishery with instabilities
and overfishing. This observation provides support for adopting a “precau-
tionary principle” in fishery management when there is scientific uncertainty.
When the extensive collapse of fisheries over the last century is considered,
precaution in designing management rules for regulating fisheries seems to
be desirable.
Managing a fishery in this context suggests formulating the management

problem as a robust control problem along the lines developed in Hansen and
Sargent (2001), Hansen and Sargent (2003). The objective is to choose a
harvesting rule that will work, in the sense of preventing instabilities and
overfishing, under a range of different model specifications of the stock-
recruitment equation. Robust control can be directly related to uncertainty
aversion and precaution, and as Hansen and Sargent (2001) explicitly state
“a preference for robustness induces context-specific precaution”.
The purpose of this paper is to address the issue of scientific uncertainty

and the potentially induced instabilities and overexploitation in fisheries by
introducing robust control methodologies in fishery management. Our main
finding is that by an appropriate choice of the robustness parameter, which is
a parameter indicating preference for robustness, a regulator that manages
a fishery for the social optimum could eliminate multiple equilibria insta-
bilities and potential overfishing. The robust harvesting rules that lead to a
unique equilibrium can be used to design decentralized regulation with policy
instruments such as transferable quota or landing fees.

control to water management, and Chevé and Congar (2000), Chevé and Congar (forth-
coming) for alternative set definitions.
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2 Bionomic Instabilities in Fishery Manage-
ment4

We begin by considering a standard fishery model where biomass evolves
deterministically according to

ẋ (t) = F (x (t))− h (t) (1)

where x (t) is fish biomass, h (t) denotes the harvest rate and F (x (t)) is
the growth function for stock-recruitment. One common example is the
logistic growth function, where F (x) = rx (1− x/k) . Biomass stock for
the maximum sustainable yield is defined as xmsy = argmaxx F (x) , while
xk : F (xk) = 0, xk > 0 denotes the carrying capacity biomass. Let unit
harvest cost, c (x (t)) be a nonincreasing function of the fish stock x. Then
for any price p, the profit flow is determined as5

π = (p− c (x))h (2)

The open access supply in equilibrium is determined by the conditions

h = F (x) (3)

p = c (x) (4)

Solving (4) for x and substituting into (3) we obtain equilibrium supply
as h = F (x (p)) . If demand is given by h = D (p) , market equilibrium under
open access is determined as:¡

p0, h0
¢
: D

¡
p0
¢
= F

¡
x
¡
p0
¢¢

, p0 = P
¡
h0
¢

where p = P (h) is the inverse demand curve. Typical bell-shaped growth
functions together with stock effects on harvest cost and a positive discount
rate may give rise to a backward bending supply curve. Combined with a
downward sloping demand curve, this could induce multiple equilibria. With
three equilibria, the middle one indicates bionomic instability while one of the
locally stable equilibria indicates overfishing with low equilibrium harvesting
at a relatively high price.6 Multiple equilibria could be the result of prevailing
demand conditions, or could arise from demand shocks.

4This section follows Clark (1990, section 5.2), and will serve as background for the
development of robust control methodology in the following section.

5t is dropped to simplify notation.
6See for example figure 5.11 in Clark (1990), for logistic growth and unit cost equal to

c
x .
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To analyze socially optimal fishery management we introduce a social
planner or a regulator maximizing net surplus defined as U (h) − c (x)h,

where U (h) =
R h
0
P (u) du so that U 0 (h) = P (h) . The welfare maximization

problem is defined as:

max
{h(t)}

Z ∞

0

e−ρt [U (h (t))− c (x (t))h (t)] dt (5)

s.t. ẋ (t) = F (x (t))− h (t) , x (0) = x0 > 0 (6)

The current value Hamiltonian for the problem is:

H = U (h)− c (x)h+ λ [F (x)− h] (7)

with optimality conditions

U 0 (h) = λ+ c (x) , U 0 (h) = P (h) (8)

λ̇ = [ρ− F 0 (x)]λ+ c0 (x)h (9)

along with biomass evolution (6) and the transversality condition at infinity.
Differentiating (8) with respect to time and substituting into (9) we obtain
the dynamic system that characterizes the optimal paths of harvest and fish
stock. The behavior of harvest is given by

ḣ =
1

U 00 (h)
[(ρ− F 0 (x)) (U 0 (h)− c(x)) + c0 (x)F (x) , U 0 (h) = P (h)]

(10)
whereas stock behaves according to (6). The deterministic steady state equi-
librium is defined as ḣ = ẋ = 0. At the steady state, market equilibrium is
characterized by

P (h) = p, p = c (x)− c0 (x)F (x)
ρ− F 0 (x)

= Sρ (x) , h = F (x) (11)

which describe demand, supply, and biological equilibrium respectively. Solv-
ing the stock equilibrium equation of (11), market equilibrium when the fish-
ery is optimally managed is defined as

(p∗, h∗) : P (h∗) = Sρ (x (h
∗)) , p∗ = P (h∗) (12)

The discounted supply curve determined by (11) is backward bending as
in the case of open access fishery and could induce multiple equilibria, as
presented in the phase diagram of figure 1.7

7See also Clark (1990) figures 5.17 and 6.12.
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[Figure 1]

For the ḣ1 = 0 isocline there is a unique steady state which is saddle point
stable atM . However, a demand shock could shift this isocline to ḣs = 0 and
induce multiple equilibria, atM1, M2, andM3, with the middle one being un-
stable and M3 indicating overfishing. Furthermore, if the benchmark model
for stock evolution is misspecified, it is possible for a worse than estimated
model for the stock-recruitment relationship F (x) to be realized. Under de-
mand shocks and misspecification of the stock-recruitment relationship both
the ẋ = 0 isocline and the ḣ = 0 isocline shift and multiple equilibria could
also be induced. If these shifts yield a system such as ẋ2 = 0, ḣ2 = 0 then
multiple equilibria emerge at ED

1 , E
D
2 , E

D
3 . It is also possible for the true

model to correspond to an ẋ = 0 isocline even further below ẋ2 = 0, so that
an equilibrium with harvesting rule ḣ2 = 0 does not exist. This harvesting
rule would lead to resource collapse under such circumstances.
The possibility of multiple equilibria at the social optimum presents prob-

lems for regulation. For example, the regulatory instruments could have been
designed to steer the system towards M1 but due to demand shocks and/or
misspecification, as described above, the systems could converge, for appro-
priate initial conditions, to a state like ED

3 which is an overfishing steady
state. To prevent regulatory complications arising from such cases a dif-
ferent type of regulation is required. The idea behind the robust control
methodology, as applied in this paper to fishery management, is to help de-
sign rules which under the worst possible scenario for the stock-recruitment
relationship will prevent instabilities, steady state multiple equilibria and
biological overfishing.

3 Robust Control and Fishery Management

To develop the robust control methodology we introduce uncertainty in the
stock-recruitment equation. Let (Ω,F ,G) be a complete probability space,
and let xt = x (ω, t) , ht = h (ω, t) be the stochastic processes for the fish
biomass and harvesting, respectively. Moreover, letBt = B (ω, t) be aWiener
process, E (dBt) = 0, var (dBt) = dt.
The stochastic social optimization problem for the fishery can be defined

as the choice of a nonanticipating harvesting process h (ω, t) that maximizes
the expected value of net surplus, subject to the constraints imposed by
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species growth rate:8

max
{h(t)}

E0
Z ∞

0

e−ρt [U (ht)− c (xt)ht] dt (13)

s.t. dx (t) = [F (xt)− ht] dt+ σdBt (14)

σ > 0, x (0) = x0 > 0 nonrandom (15)

xt ≥ 0, ht ≥ 0 (16)

where xt is the state variable and ht is the control variable of the stochastic
control problem.
In equation (14) the term F (xt) − ht represents the expected change

in the fish biomass at any given point in time, while the term σdBt is the
random amount of biomass change, with zero mean and variance σ2. In this
setup, which is a typical stochastic control problem, the manager is assumed
to know the behavior of stochastic shocks well enough to fully trust the
characterization of the probability distribution implied by (14). This basic
assumption leads to a decision on optimal harvest paths. However, it is quite
possible (indeed likely, given natural system characteristics and information
gaps) that the distribution is only an estimate, so that there is a degree of
uncertainty attached not just to the specific realization of the random shock
but also to the distribution itself. In other words, the planner might want to
consider his own doubts about the model he is using to represent randomness.
9

Following Hansen et al. (2002), we regard (14) as a benchmark model. If
we assume that the social planner knows the benchmark model then there
are no concerns about robustness to model misspesification. Otherwise, these
concerns for robustness to model misspecification are reflected by a family of
stochastic perturbations to the Brownian motion {Bt : t ≥ 0} . The pertur-
bation distorts the probabilities G implied by (14) and replaces G by another
probability measure Q. The main idea is that stochastic processes under Q
will be difficult to distinguish from G using a finite amount of data. The
perturbed model is constructed by replacing Bt in (14) with

Bt = zt +

Z t

0

Rsds, or dBt = dzt +Rtdt (17)

where {zt : t ≥ 0} is a Brownian motion and {Rt : t ≥ 0} is a measurable
drift distortion. Changes in the distribution of Bt will be parametrized as

8The basic assumption is that species biomass fluctuates continuously and that these
stochastic influences are adequately represented by Wiener processes.

9There are two essentially different types of uncertainty involved. Chevé and Congar
(2000) refer to these as risk (not knowing the precise value the shock will take) and
imprecision (not being sure of the model).
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drift distortions to a fixed Brownian motion {zt : t ≥ 0} . The distortions will
be zero under the measure G, in which case Bt and zt coincide.
Now the social planner’s concerns about misspecification of the model

describing the evolution of fish biomass can be expressed using (17) to write
the distorted model

dxt = [F (xt)− ht + σRt]dt+ σdzt (18)

Thus, in the fishery management problem under model misspecification,
equation (14) is replaced by (18). Now, following Hansen et al. (2002), the
corresponding multiplier robust control model for the fishery can be written
as:

max
ht
min
Rt

E
Z ∞

0

e−ρt
·
U (ht)− c (xt)ht + θ

R2t
2

¸
dt (19)

s.t. (18),(15) and (16)

In problem (19) the social planner is the maximizing agent that chooses
harvesting ht to maximize surplus, while “Nature” is the minimizing agent
that chooses the “worst case distortion” to the stock-recruitment relationship.
The robustness parameter θ can be interpreted as the Lagrangian multiplier
associated with an entropy constraint, which defines the maximum specifi-
cation error in the stock-recruitment relationship that the social planner is
willing to accept.10 . A value θ = +∞ signifies no preference for robustness
in the sense that the decision-maker has no doubts on the model, while lower
values for θ indicate such a preference and such doubts.
Note that a specific choice of a maximum specification error that the regu-

lator is willing to consider implies a specific choice of θ. Conversely, a specific
choice of the robustness parameter θ implies a specific maximum specifica-
tion error. Thus a desire to be robust, as reflected in θ, can be translated
to a maximum acceptable specification error and vice-versa. Infinite θ im-
plies that the regulator is not willing to consider any specification error and
regards the benchmark model as a good model, or rather, as the model.

10Relative entropy is a measure of the distance between the distributions G and Q.
It must be limited, otherwise they would be distinguishable. More rigorously, the en-

tropy constraint is
R∞
0

e−δuEQ
³
|Ru|2
2

´
du ≤ η (see Hansen et al. (2002)). Then θ can be

interpreted as the Lagrangian multiplier associated with the constraint robust problem
max
ht
min
Rt
E R∞

0
e−ρt [U (ht)− c (xt)ht] dt, subject to (18),(15), (16) and the above entropy

constraint, with η being the maximum specification error that the regulator is willing to
consider. As Hansen et al. (2002) show, the constraint problem and the multiplier problem
are equivalent.
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Using the Fleming and Souganidis (1989) result on the existence of a
recursive solution to the multiplier problem, Hansen et al. (2002) show that
problem (19) can be transformed into a stochastic infinite horizon two-player
game where the Bellman-Isaacs conditions imply that the value function
J (xt, θ) satisfies11

ρJ (x, θ) = max
h
min
R

( h
U (h)− c (x)h+ θR

2

2

i
+

Jx [F (x)− h+ σR] + 1
2
σ2Jxx

)
(20)

= min
R
max
h

( h
U (h)− c (x)h+ θR

2

2

i
+

Jx [F (x)− h+ σR] + 1
2
σ2Jxx

)

A solution for game (20) for any given value of the robustness parameter
θ will determine the socially optimal robust harvesting policy.

3.1 Robust harvesting rules

The optimality conditions associated with the optimization in the right hand
side of (20) imply

U 0 (h)− c (x) = Jx (21)

R = −σ
θ
Jx (22)

Equation (21) is the usual result that at the optimal harvest the net
marginal benefit of an additional unit of catch must be equal to the resource
cost, whereas equation (22) is the worst possible distortion that is admissible,
which is negative as expected and depends on θ. When θ is large, R is small
and the benchmark model is a good approximation. More specifically, when
θ → ∞ there is no distortion at all and the model yields the same solution
as the typical optimal stochastic control model.
Going through the required derivations (see Appendix A), we obtain the

solution for the evolution of harvesting (in expected terms), which depends
on the distortion R :

(1/dt) Edh = 1

U 00 (h)

½
[ρ− F 0 (x)] (U 0 (h)− c (x)) + c0 (x) [F (x) + σR]

+1
2
σ2c00 (x)− 1

2
U 000 (h)σ2h2x

¾
(23)

substituting the worst case distortion R from first order condition (22), we
have the differential equation governing the change of the expected value of

11t is dropped again to simplify notation.
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robust harvesting along the optimal path.

(1/dt) Edh = 1

U 00 (h)

" h
ρ− F 0 (x)− σ2

θ
c0 (x)

i
(U 0 (h)− c (x)) + c0 (x)F (x)

+1
2
σ2 (c00 (x)− U 000 (h)h2x)

#
(24)

Likewise, the evolution of the expected value of biomass, after substituting
R from equation (22) into equation (18) and taking expected values, becomes

(1/dt) Edx = F (x)− h− σ2

θ
(U 0 (h)− c (x)) (25)

Equations (24) and (25) summarize the evolution of the expected values
of harvesting and biomass under socially optimal management with robust
control.

4 Robust Equilibrium: Uniqueness and Reg-
ulation

In equilibrium (1/dt) Edh = (1/dt) Edx = 0. Using (24) and recalling that
U 0 (h) = P (h) , the socially optimal expected steady state harvest under
robust control will be determined by:

ρ = F 0 (x) +
σ2

θ
c0 (x)− c0 (x)F (x) + 1

2
σ2 (c00 (x)− U 000 (h)h2x)

P (h)− c (x)
(26)

Under certainty σ = 0, in which case (26) is reduced to the well known rule
for optimal fishery management, equation (11). Similarly, the management
rule under “typical”, risk-type uncertainty in stock-recruitment, without a
preference for robustness, is obtained by setting σ 6= 0 and θ →∞.
Solving (26) for P (h) the robust equilibrium market clearing conditions

become:

p = P (h) =

c (x)−
"
c0 (x)F (x) + 1

2
σ2 (c00 (x)− U 000 (h)h2x)

ρ− F 0 (x)− σ2

θ
c0 (x)

#
(27)

h+
σ2

θ
U 0 (h) = F (x) +

σ2

θ
c (x) (28)

where condition (28) indicates stationary biomass, xθ(h, θ). Substituting
into (27) we obtain the robust supply curve p = Sθ (h, θ) . Then market
equilibrium is obtained as:

(p∗θ, h
∗
θ) : P (h

∗
θ) = Sθ (h

∗
θ, θ) and p∗θ = P (h∗θ) (29)
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Setting θ → ∞ we obtain the corresponding equilibrium condition under
risk. It is interesting to note that the simpler type of randomness (assuming
a known distribution) affects only the supply curve (??), but not the stock
equilibrium condition (??). However, once we allow for model uncertainty
the stock equilibrium condition is also affected by the robustness parameter,
so that both harvest and stock expected paths are modified. The chosen
equilibrium will depend on σ (which is assumed to be exogenous) as well as
θ. Now the interesting question is how to choose an appropriate value for
this parameter. One possibility is to use the detection error probabilities
associated with a given sample of observations for biomass evolution, cal-
culating likelihood ratios between different worst case distributions and the
benchmark (see Hansen and Sargent (2003)).
Alternatively, the discussion in section 2 suggests that the dynamic fishery

model could be associated with problems of multiple equilibria and bionomic
instabilities, which suggests that θ could also be used to eliminate such prob-
lems. To make the point clear, assume that the fishery is controlled using
only the benchmark model (14), which implies that θ → ∞. The dynamic
system for expected harvesting and biomass is defined, using (23) and (25)
for θ→∞, by:

(1/dt) Edh =
1

U 00 (h)

½
[ρ− F 0 (x)] (U 0 (h)− c (x)) + c0 (x)F (x)

+1
2
σ2c00 (x)− 1

2
U 000 (h) σ2h2x

¾
(30)

(1/dt) Edx = F (x)− h (31)

Suppose that this system has a unique equilibrium with the usual saddle
point property, shown, in Figure 1, as the intersection of ẋ1 = 0 and ḣ2 = 0
at point E. Assume now that the benchmark model is not the true one, but
that the true one is a distorted model for some RD < 0. Since there are no
robust control considerations by the manager, the corresponding dynamic
system in expected values is given by (30) and

(1/dt) Edx = F (x)− h+RD

In this case while the (1/dt) Edh = 0 isocline remains the same, the (1/dt) Edx =
0 isocline shrinks inward, possibly as far as the ẋ2 = 0 isocline in Figure 1,
inducing multiple equilibria at ED

1 , E
D
2 , and ED

3 . If R
D is sufficiently large

in absolute value, then there could be no steady state equilibrium at all and
the resource might collapse. Thus controlling with the benchmark model
when the distorted model is true could lead to instabilities or even resource
collapse.12

12These effects will be more profound and detrimental the faster the biomass and harvest
dynamics.
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The idea behind stabilization through robust control is to choose a har-
vesting rule such that the system has a unique equilibrium not only for the
benchmark model but for the worst possible distortion R that Nature could
choose. If a unique equilibrium exists under the worst possible distortion,
we want to show that uniqueness will also hold for milder distortions of the
benchmark model.
Under robust control the equilibrium harvesting and biomass are deter-

mined by (24), (25). In this system θ can be used as a free parameter.
Therefore, it could be chosen in principle so that the system has a unique
equilibrium. This idea can be explained with the help of Figure 2, which de-
picts again the three equilibria that emerge from the distorted model without
robust control, ED

1 , E
D
2 , and ED

3 of Figure 1. Choosing a specific θ implies
that the (1/dt)Edh = 0 and the (1/dt)Edx = 0 isoclines of the system (24),
(25) will shift. The idea is to choose θ so that the isoclines shift to positions
such as HRHR and AxRk , intersecting only once at point E

R.

[Figure 2]

Choosing θ this way implies that the preference for robustness is combined
with a preference for uniqueness. A specific value of θ that guarantees a
unique, stable equilibrium can be translated to a maximum specification
error that the manager or regulator is willing to accept, by recalling θ0s role as
multiplier of the entropy constraint in the constraint problem formulation.13

Provided that uniqueness is preserved under milder distortions, the use of
robust control ensures that a unique equilibrium exists for all distortions
from the benchmark case to the worst one. Thus, if a milder distortion shifts
the (1/dt)Edx = 0 isocline to BxMk in Figure 2, since the robust control
solution fixes the (1/dt)Edh = 0 isocline at HRHR, uniqueness is preserved
at EM .
An approach for choosing such a θ can be described as follows. Let

(x, h) ∈ A ⊂ R2
+, where A = (0, hmax) ⊗ (0, xmax) , xmax > xk. and hmax

sufficiently large but without violating any technical constraints. Let θ ∈
Θ = (θ,∞), where θ defines the lower bound of admissible values of θ, ie.
the nonnegative values of θ for which the objective function can be larger than
−∞. The (1/dt) Edx = 0 isocline defines, using (25), the curve G (x, h; θ) =
0, while the (1/dt) Edh = 0 isocline defines, using (24), the curveK (x, h; θ) =
13The uniqueness - stabilization argument used in this paper can be complementary

to the detection error probability approach. For instance, it is possible that more than
one value of θ achieve uniqueness, in which case detection error probabilities can provide
additional input into the final choice.
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0. If a θ∗ exists such that G (x, h; θ∗) = 0 and K (x, h; θ∗) = 0 have a unique
solution (x∗, h∗) , then robust control leads to a unique equilibrium. Sufficient
conditions for the existence of such a θ can be derived.
Consider the Jacobian determinant of the system (24), (25):

D (x, h; θ) =

¯̄̄̄
Gx (x, h; θ) Gh (x, h; θ)
Kx (x, h; θ) Kh (x, h; θ)

¯̄̄̄
for (x, h) ∈ A, θ ∈ Θ̃ ⊆ Θ (32)

where Θ̃ is the subset of values of θ for which the a solution for the system
exists.

Proposition 1 If D (x, h; θ) does not change sign in A ⊗ Θ̃ ⊆ Θ then a
unique robust equilibrium exists for the expected values of harvest and bio-
mass.

For proof see Appendix B.

A possible illustration of this result can be presented with reference to
Figure 2. The uniqueness condition means that a θ∗ is selected such that the
HRHR curve cuts the horizontal axis between A and xRk , that it is monotonic
increasing at least up to xRk , and that the intersection takes place at the
non increasing part of the AxRk curve.

14 At the equilibrium point the slope
condition for the HRHR and AxRk curves implies, using (32), that

−Kx (x, h; θ
∗)

Kh (x, h; θ
∗)

> −Gx (x, h; θ
∗)

Gh (x, h; θ
∗)
or

dh (θ∗)
dx

¯̄̄̄
(1/dt)Edh=0

>
dh (θ∗)
dx

¯̄̄̄
(1/dt)Edx=0

For D (x, h; θ∗) = GxKh −KxGh < 0 the robust equilibrium has the saddle
point property.
To locate sufficient conditions for uniqueness to be preserved under milder

distortions, consider a θ∗ that provides a unique equilibrium satisfying Propo-
sition 1. For this value of θ the triplet (x∗, h∗, θ∗) will determine a corre-
sponding R∗ which is the worse possible distortion. Consider now arbitrary
distortions R̃ ∈ [R∗, 0] , with R̃ = 0 corresponding to the benchmark model
and R̃ = R∗ corresponding to the robust model. Thus as R increases toward
zero we have milder distortions and the (1/dt) Edx = 0 isocline shifts. In
terms of Figure 2 this means that the AxRk curve shifts outwards uniformly.
Keep the HRHR to the robust equilibrium position determined by the triplet
(x∗, h∗, θ∗) , and consider the sequence of determinants:

D̃
³
x, h; R̃

´
=

¯̄̄̄
¯ Gx

³
x, h; R̃

´
Gh

³
x, h; R̃

´
Kx (x

∗, h∗;R∗) Kh (x
∗, h∗;R∗)

¯̄̄̄
¯ (33)

14An intersection could take place at the increasing part of the AxRk curve, but additional
conditions would be required to ensure uniqueness in that case.
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It is clear that D̃ (x, h;R∗) = D (x, h; θ∗) .

Proposition 2 If D̃
³
x, h; R̃ = 0

´
has the same sign as D (x, h; θ∗) and it

is monotonic in R̃ then the uniqueness of the robust equilibrium is preserved
under milder distortions in (R∗, 0]

For proof see Appendix ??.

In terms of Figure 2, uniqueness is obtained if the (1/dt)Edh = 0 isocline
is increasing at least up to the carrying capacity of the benchmark model.
Furthermore, since AxRk shifts uniformly outwards, say to Bxmk in figure 2,
while HRHR remains fixed, uniqueness with the saddle point property is
preserved up to the benchmark model.15

Of course it is possible that several θ satisfy the sufficient conditions
described above. In such a case, the value for θ can be chosen to ensure
the highest expected value for the robust control problem.16 More formally,
among the set of θ that satisfy conditions for uniqueness and preservation of
uniqueness under milder distortions, a θ∗∗ is chosen such that:

θ∗∗ = argmax
θ
E
Z ∞

0

e−ρt
"
U (h∗t (θ))− c (x∗t (θ))h

∗
t (θ) + θ

R∗ (θ)2

2

#
dt

where h∗t (θ) , x
∗
t (θ) , R

∗ (θ) are solutions of the robust control problem eval-
uated at each θ.
If a unique robust equilibrium is defined, the value obtained for harvest-

ing in these conditions can be used as a robust quantity limit for designing
tradable quota systems. In this case a robust quota is determined by a policy
function hRt = φ (xt) which is the function characterizing an approach path
to the unique robust equilibrium. This is the path RR corresponding to
the one dimensional stable manifold of the saddle point robust equilibrium,
converging to ER in Figure 2.17 This result can be related to the safe quota
15If milder distortions are realized, updates of the policy might be possible. The analysis

of the updating process for a robust rule is left for future research.
16Given empirical data, the set of allowable θ can be narrowed down to those that

generate reasonable detection error probabilities. See footnote 13.
17The stable manifold or equivalently the policy function hRt = φ (xt) can be recovered by

numerical methods. Using the time elimination method, the stable manifold is determined
by the solution of the differential equation

dh

dx
=
(1/dt)Edh
(1/dt)Edx

with initial conditions (x∗, h∗) , which is the robust steady state corresponding to ER in
Figure 2.
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concept discussed in Homans and E.Wilen (1997). They assume a quota that
is a linear function of the biomass, so that the safe quota is determined as
hS = max {0, c+ dx} , with c < 0, d > 0. Thus if the stock is below some
minimum value then hS = 0 (as negative harvesting is obviously ruled out),
while the quota is below, equal or above biological growth if x T xsafe, re-
spectively. In our case for each stock level the quota is "safe" in the sense
that it ensures that the robust equilibrium biomass is attained in the long
run even under the worst possible scenario for stock-recruitment.
It should be noted that the robust quota rule which attains a steady

state biomass equilibrium for the worst possible case of the stock-recruitment
equation implies smaller harvesting relative to the benchmark model. If the
benchmark model was actually the true model, then with initial condition xR0
in Figure 2, the benchmark quota would be determined by the stable manifold
NN converging to ED

1 , which defines the policy function hNt = ψ (xt) . The
difference hNt −hRt can be interpreted as the reduction in harvesting induced
by the decision to follow robust rules. Moreover, the difference

1

ρ
E ©[U (h∗)− c (h∗, x∗)]− £U ¡h+¢− c

¡
h+, x+

¢¤ª
will indicate the change in expected steady state welfare between robust and
benchmark rules. Since this difference is negative, it can be interpreted as
the steady state cost of wanting to be robust, or to put it in a different way,
as the cost of precaution.

5 Concluding Remarks

Bionomic instability is an inherent characteristic of fishery models induced
by a backward bending supply curve. This instability emerges both in open
access and in optimally controlled fisheries. Given the uncertainties associ-
ated with fisheries, these instabilities could be intensified by demand shocks
or uncertainties associated with the stock-recruitment relationship.
In the present paper we consider the case of scientific uncertainty in the

stock-recruitment relationship and we introduce robust control methods in
fishery management. We show that robust control could act as a tool to
prevent instabilities, by an appropriate choice of the robustness parameter.
This is obtained by designing a rule so that the optimally managed fishery
is stable under a worst possible scenario for the stock-recruitment relation-
ship.The robust management rule can be used to design a robust quota rule
that work better than typical prescriptions under uncertainty, both in the
sense of maintaining stable harvests and in avoiding biomass collapse. This
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management rule will, however, have a cost in terms of foregone expected
harvesting benefits.
The robust harvesting solution can be used as a basis for setting "safe"

quotas to be applied in a fishery. The question of whether and when it
makes sense to update the robustness parameter as more information be-
comes available on stock-recruitment, and thus to update the harvesting rule
accordingly, is one potencially important question which should be addressed
in future research.
Finally, the basic model developed here can also be extended along dif-

ferent lines, such as depensation or non-linear cost effects, or by considering
the fishery as a dynamic game between the planner/regulator and the fish-
ermen, and seeking robust solutions with possible heterogenous preferences
for robustness.
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A Derivation of optimal solution

This appendix shows how to derive equation (23).
Differentiating the value function with respect to x and using (21) and

(22) we obtain 18

ρJx = [F (x)− h+ σR]Jxx − c0 (x)h+ F 0 (x)Jx +
1

2
σ2Jxxx (34)

since J (x) is a function of the stochastic variable x we have by Ito’s lemma
for Jx (x)

dJx (x) = Jxxdx+
1

2
Jxxx (dx)

2 (35)

Using equation (18), taking expected values, and dividing by dt we obtain

(1/dt) EdJx (x) = Jxx [F (x)− h+ σR] +
1

2
σ2Jxxx (36)

Substituting in (34) and rearranging with (21), the expected evolution of the
resource cost is

(1/dt) EdJx = [ρ− F 0 (x)] (U 0 (h)− c (x)) + c0 (x)h (37)

To express the solution in terms of the expected evolution of harvesting,
apply the differential operator (1/dt) Ed (·) to (21)

(1/dt) Ed (U 0 (h)− c (x)) = (1/dt) EdJx (38)

We need to expand the left hand side of (38), by applying Ito’s lemma to
c (x) and U 0(h), which yields the following second order expansions:

Edc (x) =

·
c0 (x) [F (x)− h+ σR] +

1

2
σ2c00 (x)

¸
dt (39)

dU 0 (h) = U
00
(h) dh+

1

2
U 000 (h) (dh)2 (40)

Since along the optimal path h = h (x) , where x is a stochastic variable,
using Ito’s lemma once again yields

dh =

·
hx [F (x)− h+ σR] +

1

2
σ2hxx

¸
dt+ σhxdz (41)

18For a basic explanation of the methods used in this section see for example Dixit and
Pindyck (1994, Ch.4).
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When taking the expected value, terms of order higher than t go to zero, so
that E (dh)2 = σ2h2xdt, and (40) becomes

EdU 0 (h) = U
00
(h) Edh+ 1

2
U 000 (h)σ2h2xdt (42)

Using equations (39) and (42) to plug into (38), and recalling (37) we finally
obtain

(1/dt) Edh = 1

U 00 (h)

½
[ρ− F 0 (x)] (U 0 (h)− c (x)) + c0 (x) [F (x) + σR]

+1
2
σ2c00 (x)− 1

2
U 000 (h)σ2h2x

¾
.

(43)

B Proof of Proposition 1

We locate sufficient conditions for the existence of a

The proof follows from the proof of proposition 1. All the D̃
³
x, h; R̃

´
deter-

minants are different than zero and do not change sign. Then the implicit
value theorem and the index theorem provide existence and uniqueness under
milder distortions. ¥
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