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Abstract

This paper presents a model to study the interplay of imperfect competition and congestion. Re
live in the city center while they shop and work in subcenters (shopping centers, airports, etc.). Ea
center offers one differentiated product and one differentiated workplace. Shopping and commutin
the city center to the subcenter requires the use of transport infrastructure that can be congested. W
the Nash equilibrium in prices and in wages and analyze the welfare impacts of congestion charg
infrastructure policies. We generalize the literature on imperfect competition with (spatially) differen
products in the presence of (un) priced congestion.
 2005 Published by Elsevier Inc.

JEL classification: D43; L13; R3; R41
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1. Introduction

This paper presents a model to study imperfect competition with congestion. A city with
population is served by a number of subcenters that offer variants of the same produ
location of the subcenters and of the population is fixed and the access to each of the sub
can be congested by shoppers, workers and trucks. These subcenters can stand for differ
of products: they can represent specialized shops selling one product (cars or bikes) or t
represent shopping centers selling a fixed bundle. In the case of metropolitan areas they
represent larger facilities like airports. Each subcenters produces only one variant of the p
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The subcenters compete in prices for customers coming from the city but also compete in
for their employees as each subcenter is a differentiated workplace. Both types of comp
are linked since selling more product requires a larger work force. In the short term, the n
of subcenters is fixed and we consider a (monopolistic competition) Nash equilibrium in
and wages. In the long run, free entry and exit can change the number of subcenters. We s
properties of the short and long run equilibrium and examine the effects of congestion p
road capacity expansion and other policies that affect directly the number of subcenters.

Our model can be compared to four strands of the literature: the imperfect competiti
erature, the literature on congestion pricing with imperfect competition, the urban econ
literature and the literature on the endogenous location of shopping centers. Our model u
logit model to represent differentiated goods. Compared to the traditional models of imp
competition (surveyed in [8]), our model offers two additional features. First, it examine
perfect competition in a general equilibrium (yet simple) framework as the labor market a
delivery of intermediate goods are explicitly modeled. Second, our model introduces cong
Both elements will be shown to have an important effect on the equilibrium outcome. Introd
a general equilibrium framework and a differentiated job market offers more complexity as
compete on two markets rather than one. The equilibrium mark-up and the equilibrium n
of firms are shown to be increasing in the product and job heterogeneity parameters. Con
adds another component to the equilibrium mark-up because congestion acts as a disi
to cut prices. The welfare economics of the number of firms also changes as we now ha
market imperfections that interact. Congestion (and market power) can be relieved by
congestion pricing, by having more subcenters but also by having larger road infrastructu
three strategies are to some extent substitutes.

The interplay between congestion and imperfect competition has already been covere
case of homogeneous goods for a monopoly by [7], and for a duopoly by [6]. They sho
congestion can lead to higher mark ups if the level of congestion is indeed a function of th
sales of the monopolist. We generalize this literature in three ways. First, we use a gener
librium framework with shopping, commuting and delivery traffic where the three types of t
are influenced by the strategy of the firms. Second, we study the case of differentiated rath
homogeneous goods and finally we allow for any number of competitors on the market.

The urban economics literature takes a more global approach to the problem of con
and imperfect competition by including endogenous location of production and residen
having therefore an endogenous urban form (see [11]). In our paper, locations of subcen
residences of population are fixed although the number of subcenters is endogenized. S
consider only symmetric equilibria, all subcenters are at the same distance from the center
can therefore make the natural assumption that the price of land is identical for all subcent
can therefore be omitted from the analysis. This would not be true if firms were competi
space within each subcenter, a case that is disregarded in this paper.1 Given the many difference
in the type of forces at work (relocation and agglomeration or present in the urban eco
models but not in our model), our results are not directly comparable to the results obtaine
endogenous location models.

Fujita and Thisse [5, p. 221] survey shopping center models. These models study the e
nous location of shops and employment centers as well as consumers in a linear or homo
space. Shopping centers may exist because of search costs or when they offer sufficie

1 We discuss the case of several firms per subcenter briefly in the conclusions.
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ferentiated products. Our model has a different focus: the location of consumers is give
reside in the city center), the potential locations of subcenters are given ex-ante and eve
center has only one producer that offers a given variety of the good. This means that we
aim to study the origin, location or composition of subcenters, instead we limit ourselves
study of the properties of the competition between different subcenters.

In the model interpretation we follow in this paper, we have residents that live in the
center but shop at and commute to subcenters. This is not necessarily the most commo
structure (see [1]). Our generic model allows an alternative interpretation. In this alter
interpretation, households choose a subcenter to reside in (they “shop” for a residence) a
work in the city and in another subcenter. In the interest of clarity we do not emphasiz
alternative interpretation in this paper.

In Sections 2 and 3 we develop the model structure. In Sections 4 and 5 we stu
equilibrium and the optimum without congestion. The main result in this first section is the
eralization of the imperfect competition setting from competition in prices only to compe
in prices and wages. In Section 6 we add congestion and study the effect of congestion
Nash equilibrium in the short and the medium term. In Section 7 we discuss the potential o
types of policies: road congestion charging, limiting the number of subcenters, and extend
access capacity to the different subcenters. Section 8 concludes.

2. The model setting

We consider a center, andn subcenters. Residents are located in the center and cons
differentiated good and a homogeneous good. They supply differentiated labor as well as
geneous labor. Each resident is active and provides the same amount of work. The homo
good is produced competitively in the center using homogeneous labor and requires no
port costs. We focus our attention on the production and the consumption of the differe
good. There aren differentiated goods with subcenteri producing the quantityDi such that
D = ∑

i=1,...,n Di . In each subcenter, one producer offers one variety of the good (e.g., d
increasing returns to scale), hires heterogeneous labor, uses the homogeneous good as
diary input and sells his product at the factory gates. We denote byti the travel time per trip
between the center and subcenteri (distance divided by speed). Households commute to sub
ter i to supply labor with a travel time ofαwti , whereαw denotes the number of trips per un
of labor. Households also make shopping trips to subcenterj with a travel timeαdtj , per unit of
differentiated good, whereαd denotes the number of shopping trips per unit of consumption
i, j = 1, . . . , n. These two trips are treated as independent (trip chaining is not considered
The intermediary (homogeneous) goods needed in the subcenters are transported from th
to the subcenter with a travel time per unit of intermediary good ofαhti , whereαh denotes the
number of freight trips per unit of production. We first neglect congestion; in this case trans
tion costti is independent of the number of drivers using the road. From Section 6 onward
treat congestion by recognizing that the transportation cost increases with the number of c
trucks and decreases with road capacity.

2.1. The production possibilities

There areN households who all work and each household supplies a fixed amount,(1+ θ)

units of time, devoted to production and transportation. The production of one unit of th
ferentiated good requires one unit of labor time. The remaining labor time of the househoθ is
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devoted to the production of the homogeneous good. Each household consumes one un
differentiated good, the rest of his income is spent on the homogeneous good.

We assume linear production technologies. The homogeneous good is produced using
a one-to-one ratio (one unit of the homogeneous good is produced during one unit of tim
homogeneous good is either consumed directly or used as input for the differentiated go
for the transport services (fixed and variable input). The production of the differentiated g
subcenteri requires a fixed set-up costF (in the form of inputs of the homogeneous good)
subcenter and an intermediate input equal toc1 units of the homogeneous good per unit of
differentiated good. Moreover, each subcenter requires some road infrastructure. The pro
of this road infrastructure requiresK units of the homogeneous good. The total consumptio
the homogeneous good is denoted byG.

We can present the total production possibilities of the economy by comparing the net
and the total uses of the homogeneous good. We have the following identity for the supp
the demand for labor:

(1+ θ)N = D + c1D + nF + (
αw + αd + αh

) ∑
i=1,...,n

tiDi + nK + G, (1)

where the LHS represents the total supply of labor. The first term in the RHS represents th
use of labor in the production of the differentiated good (D with D = N ) while the remaining
terms represent the use of the homogeneous good as input into the production of the differ
good (c1D + nF ), to pay for the transportation costs(αw + αd + αh)

∑
i=1,...,n tiDi and to pay

for the infrastructure costnK . The remaining production of the homogeneous good (G) is used
as the final consumption good by the household.

The total consumption of the homogeneous good,G, is endogenous. It is computed as
residual and is given by the resources available when variable costs of heterogeneou
production, time costs and fixed production and infrastructure costs are accounted for

G = θN − c1D − (
αw + αd + αh

) ∑
i=1,...,n

tiDi − n(F + K).

As expected, the production of the homogeneous good, decreases with transport c
Section 6, congestion is taken into account and transport costs are themselves endogeno
symmetric case (considered in most of this paper),ti = t, i = 1, . . . , n and the average individua
consumption of homogeneous goodg(n) where there aren subcenters, is given by

g(n) = θ − c1 − (
αw + αd + αh

)
t − n(F + K)/N. (2)

Note that at least one center (center 1) is sustainable provided that

g(1) = θ − c1 − (
αw + αd + αh

)
t − (F + K)/N > 0.

2.2. Market structures and taxes

The homogeneous good is produced competitively in the center. The wage in this indu
normalized to one. As the market is competitive and one needs one unit of homogeneou
per unit of homogeneous product, we normalize the price and wage in the homogeneous
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to one (in this case, the transport cost is not incurred by the producers of the homogeneou
As a consequence, the value of time is one2 and the transport cost equals the travel time,ti .

The (relative) price of the differentiated goodi is denoted bypi and the (relative) wage offere
by firm i producing the differentiated goodi is denoted bywi , i = 1, . . . , n. The governmen
finances the public infrastructure input by imposing a head-taxT and a fixed levy on the firm
S: nK = NT + nS.

2.3. Household preferences

Each household consumes a variable amount of the homogeneous good (at the city cen
one unit of the differentiated good in one of then subcenters. The choice of the differentia
good corresponds to a standard discrete choice model. For the preference foundations
model we refer the reader to (Anderson et al. [8, Ch. 2]). It is assumed that each hou
must supplyθ units of labor in the city center for the production of the homogeneous good
exactly one unit of labor in one subcenter for the production of the differentiated good
choice of the differentiated workplace (subcenter) is again a standard discrete choice p
As both labor supply and the quantity of the differentiated good are fixed, the consumption
homogeneous good is the residual. We consider that each household chooses a single
employment (besides the city center) and a single shopping destination (besides the city
Therefore the only choice of interest for the household is the choice of the employment sub
(where the differentiated good is produced) and the choice of the type of differentiated g
consume (where to shop).

The direct utility function of a household who supplies one unit of labor to the different
industryi and buys one unit of the differentiated good of typek is3

Vik = gik + h̃k − β̃i − βθ, (3)

wheregik represents the consumption of the homogeneous good (whose marginal utility is
h̃k is the direct utility of the consumption of one unit of the differentiated goodk, β̃i is the
disutility of labor in subcenteri andβ is the disutility of labor in the center.

We assume that households have an equal share of the total profit,
∑

l=1,...,n πl and that the
profit share is small. As a consequence, consumers take the profits as given and the ow
differentiated firm does not take into account the impact of his pricing policy on his utility
consumer or as a worker.4 The household budget constraint is

(
wi − αwti

) + θ + 1

N

∑
l=1,...,n

πl = (
pk + αdtk

) + gik + T . (4)

According to identity (4), the revenue from supplying labor to subcenteri minus the commuting
cost plus the revenue from supplying labor to the center, plus the share in total profits is e
the cost of consumption, including shopping cost, plus the cost of the homogeneous go

2 One unit of time allows the production of one unit of the homogeneous good, which has a price equal to one
opportunity cost of one unit of time spent on the road is one.

3 Remember that the utility function is only defined when exactly one unit of the differentiated good is consum
exactly one unit of differentiated labor is supplied. As this saves on notation, we assume this troughout this text.

4 This way we avoid one of the major problems in general equilibrium with imperfect competition. For a survey s
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the head tax. By substitution of the budget constraint in (3), we get the indirect utility fun
(recall that all prices and wages are normalized by the price of the homogeneous good):

Uik = (
wi − αwti

) − β̃i + θ(1− β) + h̃k − (
pk + αdtk

) + 1

N

∑
l=1,...,n

πl − T . (5)

To recognize the fact that the jobs in the differentiated industry are heterogeneous, we
the disutility of labor,β̃i as a random variable

β̃i = βi − µwεi, (6)

whereµw > 0 is a scale parameter that measures employment heterogeneity andεi are i.i.d.
double exponentially distributed.5 The idiosyncratic termsεi express the match values betwe
the employments and the workers.

Similarly, the goods produced in the subcenter are differentiated from the shoppers p
tives. We assume that

h̃k = hk + µdεk, (7)

whereµd > 0 is a scale parameter andεi are i.i.d. double exponentially distributed.6

We consider the symmetric case:βi = β, i = 1, . . . , n (the centers are on average equa
attractive from the worker perspective),hk = h, k = 1, . . . , n (all differentiated goods have th
same gross benefit), andti = t, i = 1, . . . , n (all subcenters are equally far away). In this ca
the conditional indirect utility (5) reduces to

Uik = Ω + wi − pk + µwεi + µdεk, (8)

where

Ω = −(
αwt + β

) + θ(1− β) + h − αdt + (1/N)
∑

i=1,...,n

πl − T . (9)

Note that this model requires information on the distribution of the match values (εi andεk).
The precise value of the match value of a given household is unknown. In other word
individuals are statistically independent and nothing changes in the model at the aggrega
if the match values were to change. As a consequence, the households are allowed to mod
employment choice and the shopping choices provided that this will not change the ex
demand addressed to each firm and the expected number of workers hired by each firm.

2.4. Profits of firms

Recall thatDi denotes the demand addressed to Firmi (with
∑n

i=1 Di = N ), wi the wage
offered by Firmi andpi the price charged by Firmi for one unit of the differentiated good.
the symmetric case, the marginal cost of intermediate inputs isc = c1 + αht , i = 1, . . . , n (in the
nonsymmetric case, it isci = c1+αhti , i = 1, . . . , n), and the marginal production cost isc+wi .
The profit of Firmi is

πi(w,p) = (pi − wi − c)Di − (F + S), (10)

5 The c.d.f. of the double exponential isF(x) = exp[−exp(−x)].
6 For symmetric distributions (such as for normal), this formulation is the same ash̃k = hk − µdεk . Later on, we

use double exponential distribution which lead to the Logit model with the specification (7). The specificationh̃k =
hk − µdεk , with double exponential distribution leads to the reverse Logit, which is substantially less tractable (s
and therefore it is not considered here.
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wherew = (w1, . . . ,wn) andp = (p1, . . . , pn) denote the wage and the price vectors.

3. Household choices

3.1. The labor market choices

Given the choice of subcenterk for shopping, the utility of working ini becomes (see [8]):

Ui|k = Ωk + wi + µwεi,

whereΩk = Ω − pk + µdεk .
The probability that a worker chooses to commute to subcenteri is, given the choice of sub

centerk for shopping,P w
i|k = Prob{Ui|k � Uj |k, j = 1, . . . , n}. Note that this choice probabilit

is independent ofk and therefore shall be written asP w
i , with

P w
i = Prob

{
wi + µwεi � wj + µwεj , j = 1, . . . , n

}
.

Using the fact thatεi are double exponentially distributed

P w
i = exp

(
wi

µw

)
∑

j=1,...,n exp
( wj

µw

) , i = 1, . . . , n. (11)

Therefore, the choice probabilities for the labor market have a logit type. Note that all the
ers will select the job which offers the largest wage if the heterogeneity parameterµw is zero.
Otherwise, a worker may accept a reduced wage in order to work for a firm which best fi
preferences. The average expected number of workers in subcenteri is NP w

i .

3.2. Consumer choices

When a household is choosing in which subcenterk to shop, all the terms(wi + µwεi) con-
nected with the choice of employment are identical and therefore do not affect their cho
this case, we can rewrite the conditional utility of shopping ink given the choice of workplacei
as (see Eq. (8))

U
k|i = Ωi − pk + µdεk,

whereΩi = Ω + wi + µwεi . The probability that a household located in the center patron
subcenterk is P d

k|i = Prob{Uk|i � Ul|i , l = 1, . . . , n}. As before, the choice probabilityP d
k|i is

independent of the choicei and denoted byP d
k . We haveP d

k = Prob{−pk + µdεk � −pl +
µdεl, l = 1, . . . , n}. With the double exponential distribution, we get:

P d
k =

exp
(−pk

µd

)
∑

l=1,...,n exp
(−pl

µd

) , k = 1, . . . , n. (12)

3.3. Market clearing conditions

Recall that every household consumes one unit of the differentiated good and that th
duction of every unit of the differentiated good requires one unit of labor (provided by
household). Assuming that the labor market clears (wages are flexible), the fraction of w
which decides to work at subcenteri must be equal to the fraction of shoppers which patron
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subcenteri, whatever the wages and the prices. ThusP w
i = P d

i , whereP w
i is given by (11) and

P d
i is given by (12). We get a relation between the pricepi and the wagewi set by Firmi

exp
(

wi

µw

)
∑

j=1,...,n exp
( wj

µw

) =
exp

(−pi

µd

)
∑

j=1,...,n exp
(−pj

µd

) . (13)

Therefore, the demand for the differentiated product sold in subcenteri is Di = NP d
i =

NP w
i .

4. Equilibrium without congestion

4.1. The profit function

We look for a symmetric Nash equilibrium in prices and wages between firms (or subce
The strategic variables of subcenteri arewi andpi . Given the market clearing condition (13
the choice ofwi determines the choice ofpi and vice versa.

Consider subcenteri which takes all other wages and prices as given. Since the LHS o
is strictly increasing inwi and the RHS of this equation is strictly decreasing inpi , there is a
one-to-one relation betweenwi andpi , the other prices and wages being fixed. Letpi = fi(wi).
Note thatfi(wi) = f (wi,w−i , p−i ) wherew−i andp−i are the vectorsw andp with the ith
component missing. We shall use the following result:

dfi(wi)

dwi

= −
Pw

i (1−Pw
i )

µw

P d
i (1−Pd

i )

µd

= − µd

µw
< 0. (14)

This expression is negative since when a firm raises its wage, it increases the number of
hired. In order to be able to sell the additional production, a firm needs to reduce its price
price reduction needs to be larger whenµd is larger because then the consumers are more
to their ideal product. Conversely, the price reduction is smaller whenµw is larger, since in this
case the workers are more loyal to their preferred workplace and less amenable to chang
for a wage increase.

Given the relation between price and wage of Firmi, the profit of subcenteri only de-
pends on a single strategic variable (we select the wage as the strategic variable). In t
πi(wi,w−i , fi(wi),p−i ) = π̃i (wi,w−i , p−i ) with

π̃i (wi,w−i , p−i ) = [
fi(wi) − wi − c

]
NP w

i − (F + S), (15)

where we use the identityDi = NP w
i , and wherec = c1 + αht .

4.2. Short-run equilibrium

In the short-run equilibrium, we keep the number of firms fixed. The road size is kept
too but this is irrelevant here since by assumption there is no congestion.

Subcenters are competing in wages and prices in a noncooperative Nash game. We
find the candidate symmetric equilibrium in prices and wages denoted by(pe,we). As shown
above there is a market clearing condition that links the product and the labor markets
subcenters compete in either wage or price. We consider here that the strategic variab
wage,wi .
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The best reply of subcenteri to the wages and prices set by the other subcenters is

dπ̃i (wi,w−i , p−i )

dwi

=
{
−1+ (

fi(wi) − wi − c
) (1− P w

i )

µw

}
NP w

i + dfi(wi)

dwi

NP w
i = 0.

(16)

The first term in this expression corresponds to the standard term in oligopoly partia
librium models, while the second term (dfi(wi)/dwi NP w

i , which is negative) is specific to th
interaction between labor and the product markets. Note that at the symmetric candidat
librium P w

i = P d
i = 1/n and recall that dfi(wi)/dwi = −µd/µw. Therefore (16), set at th

symmetric candidate equilibrium, leads to

−
(

µd

µw
+ 1

)
+ (

pe − we − c
) (n − 1)

nµw
= 0.

We prove in Appendix A that the candidate equilibrium is a Nash equilibrium. Therefore

Proposition 1. In the absence of congestion, there exists a unique symmetric Nash equilibrium
in prices and wages given by

pe = c + we + (
µd + µw

) n

(n − 1)
. (17)

Interestingly, the equilibrium markuppe − (c + we) is increasing with product heterogene
but also with job heterogeneity as a consequence of the interplay between labor and
markets. The role of product heterogeneity is well known (see Anderson et al. [8]) whi
role of job heterogeneity is new: more job heterogeneity means that workers are also int
in other dimensions than the wage they earn (such as the proximity of the gym facility
charms of the boss) so that wage differences become less important and this increases t
margin. Interestingly, both types of heterogeneity work in the same direction and are ad
Each firm has market power, which decreases when the number of competitors increas
markup remains bounded away from zero asn → ∞, since each firm keeps a monopoly pow
in the product and in the labor markets. The equilibrium markup in the symmetric monop
competition models à la Chamberlin is strictly positive and given by limn→∞[pe − (c + we)] =
µd + µw > 0.

4.3. Long-run equilibrium

In the long-run equilibrium, we allow the number of subcenters to vary by free entry and
The long-run equilibrium is such that the profit of each subcenter is zero (we neglect i
problems).

The equilibrium profit (see (15)) at the symmetric equilibrium is

πe = [
pe − we − c

]N

n
− (F + S)

or after substitution of the equilibrium price levels (see Proposition 1)

πe = (
µd + µw

) N

(n − 1)
− (F + S).

The profit is a decreasing function of the number of subcenters: further entry drives pro
zero.
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The long-runnf number of subcenters is

nf = 1+ (
µd + µw

) N

F + S
> 1. (18)

At the free entry equilibrium, the consumptiongf of the homogeneous good is

gf = g(1) − (
µd + µw

) (F + K)

(F + S)
,

whereg(1) is given by Eq. (2). Less homogeneous good is consumed when the product di
tiation and/or the job heterogeneity increases since both factors increase profit margins a
free entry, also the number of firms. In this case, a larger number of firms increases the r
cost needed to produce the differentiated good,n(F + K), and therefore decreases the amo
of residual consumption of the homogeneous good.

5. Optimum without congestion

5.1. The welfare function

In the first-best, all quantities can be chosen freely and the only constraints are the pro
possibilities. Using the definition of the utility function (3), (6), and (7), and the produc
possibility constraint (2), we obtain, for the per capita welfare to be optimized, denoted byW(n):

W(n) = [
g(n) − βθ

] + E
[
max(h̃k − β̃k)

]
= [

θ − c1 − (
αw + αd + αh

)
t − n(F + K)/N − βθ

]
+

{
(h − β) + E

[
max
i,k

(
µwεi

)] + E
[
max
i,k

(
µdεk

)]}
.

Using the expression for the expected maximum if i.i.d. random variable (recall that wi
double exponential distribution:E[maxi εi] = ln(n) (see Anderson et al. [8]), we obtain

W(n) = Ψ − n

N
(F + K) + (

µd + µw
)
log(n), (19)

whereΨ is given by

Ψ = −β + θ(1− β) + h − c1 − (
αh + αd + αw

)
t. (20)

The first-best optimum in the short run (exogenous number of subcenters) and in the lo
(endogenous number of subcenters) is characterized by

Proposition 2. In the absence of congestion, the short-run first-best optimum welfare function is
given by

W(n) = Ψ − n

N
(F + K) + (

µd + µw
)
log(n), (21)

where Ψ is given by (20). The long-run first-best optimum number of subcenters is

no = (
µd + µw

) N

(F + K)
. (22)
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Proof. It remains to determine the long run optimum. The functionW(n) is concave inn. The
optimal number of subcenters,no given by (22) is obtained by differentiation ofW(n) wheren

is treated as a real number.�
At the optimum, the consumption of the homogeneous good isgo = g(no) or

go = θ − c1 − (
αw + αd + αh

)
t − (

µd + µw
) = g(0) − (

µd + µw
)
.

Whereg(n) is given by (2). Note that this expression is independent of the fixed costsF andK .
The comparative statics on the first-best number of subcenters and on the consumptio
goods are left to the reader.

5.2. Equilibrium versus optimum number of subcenters

We can now compare the equilibrium and the optimum numbers of subcenters. Note th

(p − w)e = (p − w)o + (
µd + µw

) n

n − 1
,

that is to say firms charge a price (net of wage) above the socially optimal level (c). However the
excessive price level will not induce distortions in the economy in the short run since the d
for the differentiated goods and the differentiated labor supply are inelastic. We show belo
the market power of firms induces excessive entry in the long run.

If firms pay the total cost of the road infrastructure to their subcenter (S = K), the equilibrium
number of subcenters is larger than the optimum one (nf > no), wherenf is given by (18), and
n0 is given by (22):nf = 1+ (µd + µw) N

F+K
and

nf = 1+ no. (23)

Anderson et al. [8] showed that monopolistic competition in a product market with a logit m
always generates an overentry of exactly one firm.7 We generalized this result to the gene
equilibrium context with heterogeneous product and labor markets envisaged in this pap
intuition for this result is that the introduction of an heterogeneous job market correspond
additional source of heterogeneity. However, since the labor and product market are rela
total degree of product heterogeneity stays about the same and the number of firms is to
by exactly one unit as in the case where there is only product differentiation.

Assume that 1� no, that is(F + K)/N � (µd + µw).8 In this case, since there is excess
entry, there exists a level of tax which can decentralize the social optimum. The optimal
given by

S = noK + F

(no − 1)
. (24)

Therefore the firm should optimally be charged more than the price of the infrastructures
S > K). We have

7 The excess entry is the norm for discrete choice models with log-concave error term. The one firm result is
to the Logit. For the pure oligopolistic model (one market), the upper limit, attained on the boundary of the c
log-concave function is about 12% excessive entry (see [2]).

8 The minimum number of firms at the optimum is equal to one, since each consumer has to buy a product.
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Proposition 3. In the absence of congestion, in a free-entry Nash equilibrium, the first-best opti-
mum can be decentralized by a levy per firm larger than the infrastructure cost per subcenter. If
the levy covers exactly the infrastructure cost per subcenter, at equilibrium there is one subcenter
too many.

6. Equilibrium with congestion

6.1. Model setting

We have assumed till now that the travel time on roadi, ti , is constant. From now on, we dro
this assumption and explicitly recognize that congestion may occur. In this case, travel tim
on roadi is an increasing function of the number of vehicles on this road. Each road is occ
by shoppers and by commuters as well as by trucks (that deliver the intermediate input fr
center to the subcenters). If they travel at the same time, the usage on roadi, expressed in ca
equivalent, is

ρi = N
[(

καh + αd
)
P d

i + αwP w
i

]
, (25)

whereκ represents the car equivalent of a truck. Alternatively, if trucks are traveling off
and without congestion, thenρi = N [αdP d

i + αwP w
i ]. If only shopping cars experience cong

tion, then:ρi = NαdP d
i , etc. To fix ideas, we retain here expression (25). The other case

straightforward to analyze.
The relation between travel cost,ti , and total activity on the roadi, ρi , is given by

ti = t + δ
ρi

s
. (26)

The first termt represents the transport time in the absence of any congestion. The secon
in (26) represents the variable travel cost, wheres is the exogenous capacity of the road measu
in car equivalent, and whereδ is a coefficient which depends on schedule delay costs param
for early and late arrivals. This expression is the reduced form of the bottleneck equilibrium
(see Arnott et al. [4]), where road users decide on their trip timing.9 To ease the exposition, w
consider here the simplest version of the bottleneck model that involves only one type o
that have all the same values of time, the same schedule delay parameters and the sam
arrival times.10

Recall the market clearing condition (13):P d
i = P w

i . Equation (26) reduces to

ti = t + δ
N

s
αP d

i = t + δ
N

s
αP w

i , (27)

9 In a dynamic model, users select departure time and route choice, and wish at the same time to reduce tr
and early/or late arrival at destination. At equilibrium, if users are equal, all users incur the same cost, which dep
the parameter values of the problem: demand over capacity ratio (ρi/s) and demand parameters: values of queuing ti
of early and late schedule delaysϕ and�, respectively. Here only a combinationδ of these parameters enters in the c
function with:δ = ϕ�/(ϕ + �). Note that the reduced form of the equilibrium costδρi/s can be found directly withou
computing the equilibrium solution by only using the conservation law of the number of drivers and the equi
condition which implies that all users (and in particular the first and the last one) incur the same cost. The same
is valid with different classes of users who wish all to arrive at the same time and with proportional parameter va
10 One can allow for some degree of heterogeneity. Users can be differentiated with respect to their desire
time, and their values ofδ, provided that there are discrete homogeneous classes (such as shoppers, workers
transportation) with sufficiently differentiated arrival times so that the classes of vehicles do not interact. In th
the cost function can be written as follows:(

∑
δkρk

i
)/s. It could be assumed, also, that some users do not exper

congestion: this is the case if the distribution of desired arrival time is sufficiently spread over time.
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whereα ≡ καh + αd + αw. In the symmetric case,P w
i = P d

i = 1/n and the travel cost, denote
by te, is the same on all routes

te = t + δ

n

N

s
α. (28)

6.2. Demand for goods and supply of labor

With congestion, the indirect utility of a consumer working ati and consuming atk is Uik =
Ωik + wi − pk + µwεi + µdεk , where

Ωik = (−αwtk − β
) + θ(1− β) + h − αd

i ti + (1/N)
∑

i=1,...,n

πl − T .

Using the same notation as in the noncongested case, this expression can we written as

Uik = Ω − ΛwP w
i − ΛdP d

k + wi − pk + µwεi + µdεk, (29)

whereΩ is given by Eq. (9),Λw = αwδ N
s
α andΛd = αdδ N

s
α.

As in the noncongestion case, we need to compute the derivative dg(wi)/dwi , wherepi =
gi(wi) (see (14) in the noncongestion case). With congestion, the probability that a con
purchases goodi is

P d
k =

exp
(−pk−ΛdPd

k

µd

)
∑

l=1,...,n exp
(−pl−ΛdPd

l

µd

) . (30)

This equation reduces to (12), when the variable travel time is zero or in the symmetri
(P d

k = 1/n). This is an implicit equation since the travel time on routek depends on the tota
traffic on routek, which is an increasing function ofP d

k (see Eq. (27)).
Since the travel costs depend on congestion, they cannot be assumed to be symmetric

when a firm deviates from a symmetric candidate equilibrium, it will affect road use and
costs. For example, a price cut in subcenteri will increase the level of demand, labor supply a
intermediate inputs and therefore the level of congestion and the travel costti .

Using the implicit function theorem, we get

dP d
k

dpk

= −
1

µd P d
k (1− P d

k )

1+ Λd

µd P d
i (1− P d

i )
.

Therefore, in the symmetric caseP d
i = 1/n

dP d
i

dpi

∣∣∣∣
Sym

= −
1

µd
1
n

(
n−1
n

)
1+ Λd

µd
1
n

(
n−1
n

) < 0. (31)

Note that the price sensitivity in the symmetric case decreases as the impact of congesti
sured byΛd (that containsαd andα) gets larger. Congestion decreases the incentive to cut p
since a lower price implies more customers, more workers and more intermediate deliver
therefore more congestion, which both reduce the benefit of the initial price cut. In fact the
price cut is compensated partially by congestion so that the firm is exchanging a lower
margin for more time losses rather than for more customers. With an extremely high le
congestion (Λd → ∞) the demand for one specific variety is inelastic.
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Similarly, for the labor market we have

P w
i = exp

(wi−ΛwPw
i

µw

)
∑

j=1,...,n exp
(wj −ΛwPw

j

µw

) > 0. (32)

This expression reduces to (11) when the variable travel time is zero: when there is no con
At a symmetric situation

dP w
i

dwi

∣∣∣∣
Sym

=
1

µw
1
n

(
n−1
n

)
1+ Λw

µw
1
n

(
n−1
n

) . (33)

The market clearing conditionP w
i − P d

i = 0 (see (13)) has a unique solutionpi = gi(wi) given
that dP w

i /dwi > 0 and dP d
i /dpi < 0. We have

dgi(wi)

dwi

∣∣∣∣
Sym

= − µd

µw

1+ Λd

µd
1
n

(
n−1
n

)
1+ Λw

µw
1
n

(
n−1
n

) . (34)

There are two limiting cases of interest. First, without congestion, this expression redu
Eq. (14). This case can also be obtained in the limit where the product and the labor
diversities are very large compared to congestion (µd � Λd and µw � Λw). Second, when
congestion costs are present and very high compared to the product and labor market di
(Λd � µd andΛw � µw), then

dpi

dwi

∣∣∣∣
Sym

= − Λd

Λw
− αd

αw
.

In this case the wages and the prices are solely driven by the level of congestion, since the
and the shoppers select their destination only as a function of variable travel times.

6.3. Short-run equilibrium

We study first the equilibria in the absence of government interventions: no congestio
ing, no limit on the number of centers and an exogenous road capacity. As before we assu
in the short run, the number of subcenters is given.

We know that the marginal cost isci = c1 + αhti , whereti = t + δ
ρi

s
, and road usageρi

is given by (25). Since the travel timeti is variable, the marginal cost becomes variable
endogenous. We have

ci = c1 + αh

(
t + δ

ρi

s

)
= c + ΛhP w

i ,

whereΛh = αhδ N
s
α (using Eq. (27)), and where we have definedc = c1 + αht . This means tha

the firm bears directly, via the intermediate delivery cost, part of the congestion costs it c
Using the market clearing condition, the profit of Firmi is

π̃i (wi,w−i , p) = [
gi(wi) − wi − c − ΛhP w

i

]
NP w

i − (F + S). (35)

The first-order condition for optimal wage (and price) setting is: dπ̃i/dwi = 0 or[
dgi(wi) − 1

]
P w

i + [
gi(wi) − wi − c − 2ΛhP w

i

] dP w
i = 0.
dwi dwi
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Substituting the expressions (34) and (33), the first-order condition, at the symmetric can
equilibrium reduces to[

µd

µw

(
1+ Λd

µd

1

n

(
n − 1

n

))
+ 1+ Λw

µw

1

n

(
n − 1

n

)]

−
(

pe − we − c − Λh 2

n

)
1

µw

n − 1

n
= 0. (36)

Therefore, the candidate equilibrium price is given by the solution of (36)

pe = c + Λh

n
+ we + (

µd + µw
) n

n − 1
+ δ

n

N

s
α̂2,

where α̂ = √
α(αh + αd + aw) and whereΛh = αhδ N

s
α. Note that whenκ = 1, α̂ = α. The

markup(pe − c − Λh/n − we) now has two components. The first one is the product/w
heterogeneity term (proportional to(µd + µw)), as in the noncongested case. The second t
represents the externality due to congestion, which is equal to the variable user cost.11 One easy
way to understand the role of congestion, is to introduce optimal time dependent road pri12:
with such pricing, the variable transport cost is halved and therefore equilibrium price is
by (38).13

Proposition 4. With congestion, there exists a unique symmetric Nash equilibrium in prices and
wages given by

pe = c + Λh

n
+ we + (

µd + µw
) n

n − 1
+ δ

n

N

s
α̂2. (37)

With optimal congestion pricing, there exists a unique symmetric Nash equilibrium in prices and
wages given by

pe = c + Λh

n
+ we + (

µd + µw
) n

n − 1
+ δ

2n

N

s
α̂2. (38)

Proof. See Appendix B. �
11 The total cost isT C = αNte = αN(t + δα N

sn ). Therefore the externality, which is the difference between the m

ginal cost and the average cost is equal to:δα2 N
sn = α(te − t).

12 We only discuss fine and step tolls. A fine toll evolves continuously over time. A one-step toll means that the r
period can be subdivided into two periods: one period with a fixed toll and one period without a toll. This is a
simpler but also a socially less performant instrument than a fine toll. We could consider other charging inst
(cordon tolls or parking levies that are not time differentiated) but these can in our simple model be reduced to he
per consumer or to a levy per firm. Fixed levies are not able to change the distribution over time of trips and are t
not efficient in reducing congestion. They can only affect the total level of demand for the differentiated good w
fixed in this paper.

With the bottleneck congestion model (Arnott et al. [4]), the total variable travel cost per individual(α̂)2 δ
n

N
s can be

reduced by a factor 2 when an optimal fine toll is used and by a factor 4/3 when an optimal one-step toll is used. W
an optimal fine toll, there are only schedule delay costs left as queuing is eliminated. The average congestion ch
corresponds to the fine toll equilibrium will be equal to the average schedule delay cost. With an optimal coa
queuing is not completely eliminated.
13 The average consumer price including toll ispe

cp + αd δ
2n

N
s α, while the average net wage after deduction of the

is we
cp − αw δ N

s α.
2n
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The existence proof, relegated in Appendix B, is quite complex, due to the fact that th
markets (product and labor) are interdependent. Note that without congestion, the equi
price reduces to Eq. (17). Equation (37) implies that the equilibrium price and profit ma
increase as congestion builds up (by example through exogenous reduction of the road ca
With congestion, there are two additional positive terms in the RHS. First the marginal pr
tion cost is nowc + Λh/n + we and contains a congestion term translating the increased
of intermediate deliveries. The second term is related to the congestion created by sh
commuting and intermediate delivery traffic and represents the increased market power e

As discussed, congestion reduces the incentive to cut prices, and therefore, increas
librium prices. This may explain why shops often lobby against policy measures which a
improve traffic conditions although a firm individually will be in favor of local improvement
traffic, i.e. measures which improve the accessibility to workers and consumers.

The short-run equilibrium profit (see Eqs. (35) and (37)) is

πe(s) = (
µd + µw

) N

(n − 1)
+ δ

s

(
α̂N

n

)2

− (F + S) (39)

which is an increasing function of the congestion level. Note that the profit is lower with
pricing: it decreases byδ/2s(α̂N/n)2 (see Eq. (38)).

6.4. Long-run equilibria

For a fixed level of road capacitys, the free entry equilibrium with congestion denoted
nf (s) solvesπe = 0. In order to study the free entry equilibrium, we need to specify the fi
levy per firm S. As the default value, we useS = K so that every firm pays the public in
frastructure that is specific to the firm. This leads to a cubic equation, and its solution
too illuminating. The profitπe(s) is a decreasing function of the number of subcentersn. Given
that the equilibrium profit with congestion is larger than without, the free entry equilibrium
congestion involves more firms than in the absence of congestion:nf (s) > nf .

We can find a lower bound (no(s) < nf (s)) and an upper bound for the solution of (39).
lower bound, we useno(s) that is the solution of the following equation:

(
µd + µw

) N

no(s)
+ δ

s

(
α̂N

no(s)

)2

− (F + K) = 0. (40)

We will show in the next section thatno(s) is the optimal number of firms for given road capac
and in the absence of congestion charging. Observe thatπe(no) > 0, no(s) < nf (s), so that
Eq. (40) has a unique positive root given by

no(s) = no + no

2

(√(
α̂N

no

)2 4δ

s(F + S)
+ 1− 1

)
, (41)

whereno = (µd + µw)N/(F + S) represents the optimum number of subcenters without
gestion (see Eq. (22)) provided that the firm pays the road infrastructure cost (S = K). Note that,
as expected, the number of subcenters increases when the level of monetary cost asso
congestion increases, that is, when the value of parameterδ increases.

As upper bound fornf (s), we useno(s) + 1. We have

πe
(
no(s) + 1

) = (
µd + µw

) N

o + δ
(

α̂N

o

)2

− (F + K).

n (s) s n (s) + 1
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Subtracting (40) from this equation, we get

πe
(
no + 1

) = δ

s
(α̂N)2

(
1

(no + 1)2
− 1

(no)2

)
< 0.

As a consequence,nf (s) < no(s) + 1.
Summarizing, for given road capacity, in the absence of road pricing and for an infra

ture charge on firmsS = K , we have an upper and lower bound for the equilibrium numbe
subcenters whereno(s) denotes the optimal number of subcenters

no(s) < nf (s) < no(s) + 1; nf < nf (s). (42)

Therefore, given that the optimum number of subcentersno(s) increases with congestio
costs, so does the equilibrium number of subcentersnf (s). From the equilibrium point of view
congestion decreases competition and therefore increases market opportunities and en
entry. From the social point of view, additional congestion increases the negative extern
and therefore additional subcenters are beneficial.

The discussion concerned with the impact of congestion costs on dispersion has no p
this paper since subcenters are located at the same exogenous distance from the city-ce
refer the reader to Anas and Kim [11], who analyze (in the setting of perfect competitio
joint decisions of households of where to work, where to shop and where to live. Clearl
approach and ours are complementary.

7. Optimum with congestion

7.1. First-best optimum

In the first-best, we control all consumption and production decisions. More specifical
control the number of subcenters and the departure times of shoppers, workers and tr
well as the size of the roads. The welfare per capita without congestion is given by (19)
congestion, we need to add the symmetric variable transport cost, which is defined in (2
individual variable transport cost equals(

αh + αd + aw
)( δ

n

N

s
α

)
.

Using the definitionα̂ = √
α(αh + αd + aw), and assuming that the road infrastructure c

is linear in capacity (K = ξ2s), the welfare function is

W(n, s) = Ψ − n

N

(
F + ξ2s

) + (
µd + µw

)
log(n) − δ

n

N

s
α̂2. (43)

When, in the bottleneck model, the departure times are set optimally for all road users, th
able transport costs are halved so that the welfare per capita (see Arnott et al. [4]) becom

W(n, s) = Ψ − n

N

(
F + ξ2s

) + (
µd + µw

)
log(n) − δ

2n

N

s
α̂2.

Note that, alternatively, the welfare function depends on the total road capacity(ns) and on the
number of subcenters,n. We maximize this expression with respect to the number of subce
n and the capacity of the roads to obtain (for interior solutions)

∂W(n, s) = 1
(

− (ns)
ξ2 + δ N

α̂2
)

= 0, (44)

∂s s N 2 (ns)
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∂W(n, s)

∂n
= − 1

N

(
F + ξ2s

) + (µd + µw)

n
+ δ

2n2

N

s
α̂2 = 0. (45)

The first-best number of subcenters is

nf b = N

F

(
µd + µw

)
.

It increases with product/labor heterogeneity, and decreases with the fixed production c
firm.14 Since only the total road capacityns matters, as expectednf b is independent of th
transport parameters:δ, α̂ andξ when there are constant returns to scale in road production

The first-best capacity of the road increases with the user cost (δ) and decreases with transpo
cost (ξ ). We obtain

sf b =
√

δ

2

α̂N

ξnf b
=

√
δ

2

α̂F

ξ(µd + µw)
.

Comparative static results go along intuition and are left to the reader. In particular, no
when heterogeneity increases, there are more subcenters and narrower roads. Howe
road capacity per individual in the urban system:(nf bsf b)/N = (

√
δ/2α̂)/ξ only depends on

the transport parameters: on the user sideδ andα̂ and on the road supply sideξ .
We can decentralize the first-best results by combining the following policies: time-depe

tolls which optimize departure times so as to eliminate all queuing levy on the firm which
mines the number of subcenters (this levy is positive since overentry occurs at equilibrium
optimal road size can be left to transport operators if they have no set-up costs. In this ca
free entry equilibrium for the road transport operators involves the equalization of toll rev
and construction costs. This is the self-financing property which leads to optimal road cap
when returns to scale are constant and the user cost function is homogeneous of degree 0
and capacity [12].

7.2. Short-run second best policies

In the short run the number of subcentersn is fixed (and therefore heterogeneity is fixed). T
implies that the efficiency gains have to come from lower transport costs. The second best
available in the short run are either to introduce congestion pricing or to adapt the capacity
roads (or both).

With no congestion pricing, congestion is largest and as expected, optimal road ca
is larger. More precisely, the optimal road size without road pricingssb(n) satisfies:ssb(n) =√

2ssb
cp(n).15

With optimal congestion pricing in a bottleneck model, we know that total transport cos
divided by a factor 2. In this case, the optimal road capacities are

ssb
cp(n) =

√
δ

2

α̂N

ξn
,

14 Note that a fixed road construction cost per firm,Υ would decrease the optimal number of subcenters:nf b =
N

(F+Υ )
(µd + µw).

15 Recall that the profit of firms is redistributed to users. As a consequence, in the short run, the infrastructur
paid equivalently by consumers or firms.
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and therefore, the total road capacity (capacity per road times the width of the road) is th
as in the first-best. In order words, if the number of subcenters is twice the optimal numb
second best road capacity will be half of the width in the first-best optimum.

We know that in the bottleneck model, the total toll revenue is equal to the total constr
costn ξ2ssb

cp(n), since the construction cost is linear and the user cost is homogeneous of
0 in N ands (see [12]). Moreover, it can be verified that the total construction cost is equ
the total optimal user cost:(δ/2n)(N2/s)α̂2, whens = ssb

cp(n).
We summarize our discussion in the following proposition.

Proposition 5. When the number of subcenters is fixed, and with linear construction technology,
congestion pricing halves the total transport costs, the total congestion cost is equal to the total
construction cost for optimal road capacities. With optimal road pricing, total congestion cost
equals total toll revenue.

7.3. Long-run second-best policies

In the long run, the policy maker can select the number of subcenters by using an appr
fixed levy per firm. The second-best optimal number of subcenters (without road pricin
for given road capacity) is given by:∂W(n, s)/∂n = 0 (see (45) whereξ2s = K and where
the absence of road pricing doubles the variable transport cost). This gives a unique ma
denoted byno(s) which solves

(
µd + µw

) N

no(s)
+ δ

s

(
α̂N

no(s)

)2

− (F + K) = 0.

This is the same equation as (40). Using expression (42), we are able to compare the
no(s) with the long-run free entry equilibrium with congestion and withno, the optimal numbe
of subcenters in the absence of congestion. As a consequence, the second-best optim
ber of subcenters is the lower bound proposed for the equilibrium number of subcenters
that K = S) and again excess entry prevails:no(s) < nf (s). The optimal number of subcen
ters increases with the level of congestion andno < no(s), whereno is the optimal number o
subcenters in the absence of congestion.

Next proposition shows that, at the long-run free entry equilibrium and at the optimum
gestion induces more (and smaller) subcenters. Excessive entry remains the norm but th
most one subcenter too many.16

Proposition 6. Assume fixed road capacity and no congestion charging. In the long run, conges-
tion increases the equilibrium and the optimal number of subcenters. If the fixed levy on firms
exactly covers the infrastructure cost per subcenter, the equilibrium number of firms is larger
than the optimal number of firms, but there is at most one subcenter too many.

8. Summary and conclusions

We start by summarizing the results obtained so far. Because the total demand for the d
tiated good is fixed, only two parameters matter for the welfare analysis: the number of firm

16 Of course, as in the noncongested case, there exist an optimal level of taxS which decentralizes the social optimum
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Table 1
Long-run optimum and equilibrium number of firms in the symmetric case under different congestion and po
sumptions

Capacity given Capacity given Optimum capac
LR equilibrium LR optimum LR optimum

No cong.
no toll

nf = 1+ A no = A no = A

Cong. nf < nf (s)

no toll n(s) � nf (s) no < n(s) no = A

nf (s) � no(s) + 1 s(n) = α̂N
nξ

√
δ

Cong. n
f
cp(s) < nf (s) no

cp < ncp(s) n = A′

fine toll ncp(s) < n(s) s(n) = α̂N
nξ

√
δ√
2

With A = (µd + µw) N
F+K

A = (µd + µw)N
F

the total transport costs. The total number of firms depends on the profit margin of the firms
Nash equilibrium. When there is no congestion, in the equilibrium there is always one sub
too many (see first line in Table 1). The equilibrium and optimum numbers of subcente
always (increasing) linear functions of the same parametersA andĀ: A = (µd +µw)N(F +K)

andĀ = (µd + µw)N/F . More heterogeneity (on the product or labor market) leads to a h
optimal number of subcenters. Higher fixed production costs, lead to a lower optimum n
of subcenters. When the road size cannot be optimized, the public infrastructure cost als
to a lower optimal number of subcenters.

When capacity is not infinite and congestion may occur, we need to distinguish the cas
or without road capacity optimization and with or without optimal road tolling. We discuss
the case with given road capacity (columns 1 and 2 in Table 1). Without tolling and given
capacity, the short-run profit margin is always larger in the presence of congestion so that t
entry equilibrium always entails more subcenters than in the situation without congestio
second line in Table 1). The free entry equilibrium with congestion has at most one sub
too many. Optimum congestion pricing can reduce but not eliminate the additional profit m
due to congestion. This explains that in equilibrium and with road capacity given, the equili
number of firms is highest if there is no congestion pricing (see first column in Table 1).

Any number of subcenters can be implemented by choosing the right fixed levy per firm
the free-entry equilibrium computed in Table 1, we have assumed that the fixed levy equ
infrastructure costs per firm (firms are then responsible for the construction of the infrastru
As can be seen in Table 1, we need a fixed levy per firm higher than the infrastructure c
obtain the optimum number of subcenters. When the planner can optimally choose the r
pacity, she compares the welfare cost of congestion with the marginal cost of capacity exp
Without congestion tolling, the benefit of road expansion will be larger than with road pr
Indeed, in the case of fine tolls, the optimum road capacity will be smaller by a factor 1/

√
2.

We have studied so far the symmetric model which allows us to derive analytical res
is straightforward to write down the nonsymmetrical version where costs, quality and tra
costs differ among subcenters. In this case it is necessary to resort to numerical approach
on variational inequalities in order to analyze the properties of the solutions (see de Palm
[10]).
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One can also study trip chaining of shopping and commuting trips. In this case the indi
that shops and works at the same subcenter can economize transport costs. The propos
work allows to study the positive and negative impacts of trip chaining on the market cond

It is assumed in this paper that there is one firm per subcenter. Alternatively it can be as
that the heterogeneity parameter is associated to the subcenter so that two or more firm
locate in the same subcenter since Bertrand competition with homogeneous goods woul
within this subcenter and firms would not cover their fixed costs (of course this additiona
would have no social value). The proposed framework can be extended to accommoda
than one firm per subcenter using a nested (logit) structure.
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Appendix A. Proof of Proposition 1

It suffices to show that the profit function is quasi-concave. Since there exists a can
equilibrium, quasi-concavity is sufficient to guarantee that this candidate equilibrium is
We prove below that at any extremum, the function is concave.

At any extremum, the first-order condition is satisfied

1

N

dπ̃i

dwi

=
[
−

(
µd

µw
+ 1

)
+ (

fi(wi) − wi − c
) (1− P w

i )

µw

]
P w

i .

The corresponding second-order condition is

1

N

µw

P w
i (1− P w

i )

d2π̃i

dw2
i

∣∣∣∣ dπ̃i
dwi

=0
= −2

(
µd

µw
+ 1

)
+ (

fi(wi) − wi − c
)(

1− 2P w
i

) 1

µw
.

But, using the fist-order condition, we get

1

N

µw

P w
i (1− P w

i )

d2π̃i

dw2
i

∣∣∣∣ dπ̃i
dwi

=0
= −2

(
µd

µw
+ 1

)
+

(
µd

µw + 1
)

(1− P w
i )

(
1− 2P w

i

)

=
(

µd

µw
+ 1

)(
−2+ (1− 2P w

i )

(1− P w
i )

)
,

or

1

N

µw

P w
i

d2π̃i

dw2
i

∣∣∣∣ dπ̃i
dwi

=0
= −

(
µd

µw
+ 1

)
< 0.

Therefore, any turning point, where dπ̃i/dwi = 0 is such that it is a maximum. As a cons
quence, the profit function is quasi-concave, and the symmetric candidate equilibrium is
equilibrium. �
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Appendix B. Proof of Proposition 4

The profit function is (whereN is normalized to one, w.l.o.g.)

π̃i (wi,w−i , p) = [
gi(wi) − wi − c − ΛhP w

i

]
NP w

i − (F + S).

The first-order condition is

∂π̃i(wi,w−i , p)

∂wi

=
(

dgi(wi)

dwi

− 1

)
P w

i + [
gi(wi) − wi − c − 2ΛhP w

i

] dP w
i

dwi

= 0.

Moreover, we have

∂2π̃i (wi,w−i , p)

∂w2
i

=
(

d2gi(wi)

dw2
i

)
P w

i + 2

(
dgi(wi)

dwi

− 1

)
dP w

i

dwi

− 2Λh

(
dP w

i

dwi

)2

+ [
gi(wi) − wi − c − 2ΛhP w

i

] d2P w
i

dw2
i

.

We wish to show that any turning point is a maximum

∂2π̃i (wi,w−i , p)

∂w2
i

∣∣∣∣
FOC

< 0.

If this condition is satisfied everywhere, the profit functionπ̃i(wi,w−i , p) is quasi-concave, an
the candidate symmetric equilibrium is Nash.

Note that, the first-order condition equation can be rewritten as

gi(wi) − wi − c − 2ΛhP w
i = −

(dgi (wi)
dwi

− 1
)
P w

i

dPw
i

dwi

.

Using this expression, we obtain after simplifications

Ω ≡ dP w
i

dwi

∂2π̃i (wi,w−i , p)

∂w2
i

∣∣∣∣
FOC

=
(

−2

(
dP w

i

dwi

)2

+ P w
i

d2P w
i

dw2
i

)

×
(

1− dgi(wi)

dwi

)
+ dP w

i

dwi

(
d2gi(wi)

dw2
i

P w
i − 2Λh

(
dP w

i

dwi

)2)
.

We show that this expressionΩ is negative given that dP w
i /dwi > 0. To to that, when ther

is no ambiguity, in order to simplify expressions, we use the following notations:


P ≡ P w
i = P d

i ,

P ′ ≡ dPw
i

dwi
,

P ′′ ≡ d2Pw
i

dw2
i

,

g′ ≡ dgi (wi)
dwi

,

g′′ ≡ d2gi (wi)

dw2
i

.

Using these notations, we have equivalently

Ω = (−2(P ′)2 + PP ′′)(1− g′) + P ′(g′′P − 2Λh(P ′)2). (B.1)
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We now need to computeP ′, P ′′, g′ andg′′ at any point (i.e. not only at the symmetric candid
equilibrium).

First let computeP ′ andP ′′. Recall that

P = P w
i = exp

(wi−ΛwPw
i

µw

)
∑

j=1,...,n exp
(wj −ΛwPw

j

µw

) .

We have, using again the implicit function theorem

P ′ =
∂P
∂wi

1− ∂P
∂Pw

i

=
1

µw P (1− P)

1+ Λw

µw P (1− P)
.

Note that[
P(1− P)

]′ = (1− 2P)P ′.

Therefore, after simplifications, we get

P ′′ =
( 1

µw

)2
P(1− P)(1− 2P)[

1+ Λw

µw P (1− P)
]3

.

Second, we computeg′ andg′′. Recall that the solution of the equationP w
i = P d

i is unique and
denoted bypi = gi(wi). We have

P d
k =

exp
(−pk−ΛdPd

k

µd

)
∑

l=1,...,n exp
(−pl−ΛdPd

l

µd

) ,

so that, using the same reasoning as above

dP d
i

dpi

= −
1

µd P d
i (1− P d

i )

1+ Λd

µd P d
i (1− P d

i )
.

Differentiation of the expressionP w
i − P d

i = 0, as a function ofwi leads to

dP w
i

dwi

− dP d
i

dpi

dpi

dwi

= 0,

thus (using again the conditionP w
i = P d

i )

g′ =
dPw

i

dwi

dPd
i

dpi

= − µd

µw

1+ Λd

µd P d
i (1− P d

i )

1+ Λw

µw P w
i (1− P w

i )
< 0. (B.2)

Therefore

g′′ = − µd

µw

Φ[
1+ Λw

µw P w
i (1− P w

i )
]2

,

with
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Φ = Λd

µd

(
1− 2P d

i

)dP d
i

dpi

g′ ×
[
1+ Λw

µw
P w

i

(
1− P w

i

)]

− Λw

µw

(
1− 2P w

i

)dP w
i

dwi

×
[
1+ Λd

µd
P d

i

(
1− P d

i

)]
.

After simplification, we get

Φ = − 1

µw

(
Λd

µd
− Λw

µw

)
(1− 2P)P (1− P)[
1+ Λw

µw P (1− P)
] .

Hence, using the expression above, we obtain

g′′ = − µd

(µw)2

(
Λd

µd
− Λw

µw

)
(1− 2P)P (1− P)[
1+ Λw

µw P (1− P)
]3

.

The sign ofg′′ is ambiguous (and note that without congestiong′′ = 0). We are now ready t
sign the expression (B.1).

We first compute the expression(−2(P ′)2 + PP ′′). We have

(−2(P ′)2 + PP ′′) = − P 2(1− P)

(µw)2
[
1+ Λw

µw P (1− P)
]3

[
1+ 2

Λw

µw
P(1− P)2

]
< 0.

Furthermore, replacing the expression forg′ and after simplifications, we get

(1− g′) =
(
1+ µd

µw

) + (Λw+Λd)
µw P (1− P)

1+ Λw

µw P (1− P)
> 0.

A combination of the last two expressions leads to

(−2(P ′)2 + PP ′′)(1− g′) = − P 2(1− P)

(µw)2
[
1+ Λw

µw P (1− P)
]4

[
1+ 2

Λw

µw
P(1− P)2

]

×
[(

1+ µd

µw

)
+ (Λw + Λd)

µw
P (1− P)

]
.

We are ready to compute the second term of (B.1). After substitution, we obtain

P ′g′′P = − µd

(µw)3

(
Λd

µd
− Λw

µw

)
(1− 2P)P 3(1− P)2[
1+ Λw

µw P (1− P)
]4

.

Note thatΩ = Ω1 − 2Λh(P ′)3 < Ω1 (sinceP ′ > 0), with

Ω1 = (−2(P ′)2 + PP ′′)(1− g′) + P ′g′′P.

We show thatΩ2 < 0 with

Ω1 = P 2(1− P)

(µw)2
[
1+ Λw

µw P (1− P)
]4

Ω2.

Using the two expressions derived above, we get
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Ω2 =
[
1+ 2

Λw

µw
P(1− P)2

][(
1+ µd

µw

)
+ (Λw + Λd)

µw
P (1− P)

]

− µd

µw

(
Λd

µd
− Λw

µw

)
(1− 2P)P (1− P).

We can expand and regroup the terms to get

Ω2 = −2
Λd

µw
P (1− P)2 − µdΛw

(µw)2
P(1− P) −

(
1+ µd

µw

)

− Λw

µw
P(1− P)

[
1+ 2(1− P)

] − 2
Λw(Λw + Λd)

(µw)2
P 2(1− P)3.

This shows, as required, thatΩ2 < 0 and thereforeΩ1 andΩ < 0. As a consequence

∂2π̃i (wi,w−i , p)

∂w2
i

∣∣∣∣
FOC

< 0. �
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