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Abstract

This paper investigates the relationship between CO9 emission allowance prices and
those of various other financial variables and commodities. Different copulas are ap-
plied in order to model the complex dependence structure between the return series
of carbon emission allowance prices and those of various commodities as well as
other financial series. As suggested in the literature, the use of correlation as the
only measure of dependence can lead to an underestimation of the risk of joint
extreme price movements. What is more, copula models represent a more flexible
method for deriving the nature of dependence and provide an appropriate fit also
for the tails of multivariate distributions. The findings suggest that the relation-
ship between EU emission allowance (EUA) future returns and those of the other
commodities - in particular gas and oil markets - is relatively weak. However, we
find some dependence between EUA futures and equity or energy index returns.
These results at least somehow contradict earlier studies that report no statistically
significant or even negative correlations between returns of emission allowances and
other financial variables. Regarding the nature of dependence, we also find some
evidence of weak symmetric tail dependence for most of the considered series. Our
findings generally suggest that EUAs can be characterized as an asset appropriate
for portfolio optimization and diversification in equity and commodity markets.
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1 Introduction

Under the Kyoto Protocol the EU has committed to reducing greenhouse gas
(GHG) emissions by 8% compared to the 1990 level by the years 2008-2012.
The intention is to give a price to carbon emissions and to incentivize the
reduction of the respective GHG, an EU-wide CO5 emissions trading system
(EU-ETS) has been set up and the right to emit a particular amount of CO,
has become a tradable commodity. The new market not only requires regulated
emitters to run an adequate risk management, it also provides new business
development opportunities for market intermediaries and service providers like
brokers or marketeers. However, it is essential for carbon market players to
learn about price dynamics in order to realize trading strategies, risk strategies
and investment decisions.

In particular with the end of the first trading period in 2007 empirically an-
alyzing emission allowance prices receives growing attention in the literature.
Papers such as Paolella and Taschini (2008), Benz and Triick (2009) and Gron-
wald and Ketterer (2009) epitomize these concerted research efforts. While
these papers employ univariate techniques, applications of multivariate ap-
proaches become considerably popular, see e.g. Alberola et al. (2009) and
Nazifi and Milunovich (2009).

In this paper we contribute to the literature in the following way. The first
goal is to provide an analysis of the dependence structure between EUA spot
and futures returns and those of other financial and commodity markets. It
could be argued that as a factor of production changes in emission allowance
prices might be related to the dynamics of other commodity markets. Further,
since EUA prices are not primarily determined by financial markets but rather
by policy measures and regulatory changes, they could potentially be used for
portfolio diversification. To our best knowledge this is a pioneer study on
applying and testing different copula models in emission allowance markets.
Finally, we provide a risk analysis comparing a standard variance-covariance
approach to the estimated copula models with respect to the quantification of
the risk.

The remainder of the paper is organized as follows. Section 2 provides a brief
description of market mechanism for CO, emission allowances, a classification
of the assets as well as price drivers of the market. Section 3 provides a review
of different copula models with respect to estimation, model testing, modeling
the dependence structure and risk analysis. Section 4 describes the considered
data and provides the empirical results of our study. Section 5 concludes and
gives suggestions for future work.



2 The European Emission Trading Scheme

2.1 Regulatory Setting

Combustion installations exceeding 20 MW are affected by the trading scheme
including different kinds of industries like metal, cement, paper, glass etc. as
well as refineries or coke ovens. In total, the EU-ETS includes some 12300
installations, representing approximately 42% of EU’s GHG emissions. From
2013 onwards the system will cover more GHG emissions, as PFCs and N,O.
After an initial pilot trading period (2005-2007), new allocation plans have
been issued in 2008 for the first Kyoto commitment trading period from
2008-2012. From 2013 the third trading period will commence that lasts until
2020.The caps for these years and the allocation mechanisms are already set.
Allocation is currently assessed by the European Commission in so-called Na-
tional Allocation Plans (NAP). In the third period these will be replaced by
unified rules applying to all member states. Generally, allowances may either
be allocated free of charge, auctioned off or sold at a fixed price while accord-
ing to the European Commission the importance of auctioning will further
increase over time. However, it is important to note that the annual quantity
of allocated emission allowances is limited and already specified by the EU-
Directive for all trading periods already.

Some regulatory settings are particularly important, as they shape compliance
behavior. Under the current system banking and borrowing, hence the stor-
age of unused certificates and the use of future allowances in earlier years, give
more leeway for complying parties and smoothes prices. A detailed analysis of
banking and borrowing rules is provided by Alberola and Chevallier (2009).
Another particularity of current framework is a period of allocation overlap:
allowances for the new compliance year are obtained in February, certificates
due for the previous year have to be handed back in April.

Generally, the lack of allowances requires a company to either invest in some
plant-specific or process improvements or the purchase of additional allowances
and emission credits from CDM or JI projects, the Flexible Kyoto Mecha-
nisms. Failure to submit a sufficient amount of allowances results in sanction
payments of 100 Euro per missing ton of CO4 allowances. In addition, com-
panies have to surrender the missing allowances in the following year. As a
consequence, participating companies face several risks specific to emissions
trading. In particular, price risk (of fluctuating allowance prices) and volume
risk (due to unexpected fluctuations in energy demand the emitters do not
know ex ante their exact demand for EUAs) have to be considered. Naturally,
market generic risks — like counterparty, operational, reputational, etc. — are
also present. For a discussion see e.g. Bokenkamp et al. (2005).



2.2 Commodity pricing models

EUAs are different than more traditional commodities. What is actually sold
is a lack or absence of the gas in question. Therefore, emissions become either
an asset or a liability for the obligation to deliver allowances that cover those
emissions (PointCarbon, 2004). Benz and Triick (2009) point out the differ-
ences between emission allowances and classical stocks. While the demand and
the value of a stock is based on profit expectations of the underlying firm, the
CO; allowance price is determined directly by the expected market scarcity
induced by the current demand and supply at the carbon market. Notably,
firms by themselves are able to influence market scarcity and hence the market
price by their CO, abatement decisions. It is important to note that the an-
nual quantity of allocated emission allowances is limited and already specified
by the EU-Directive for all trading periods.

A more appropriate approach in specifying CO5 emission allowances is their
consideration as a factor of production (Fichtner, 2004). The shortage of emis-
sion allowances by reducing the emissions cap for the commitment periods
classifies the assets as 'normal’ factors of production. They can be ’exhausted’
for the production of COy and after their redemption or at the end of the
commitment period when they expire, they are removed from the market.
Accordingly, it seems more adequate to compare the right to emit CO, with
other operating materials or commodities than with a traditional equity share
and hence to adopt rather commodity than stock pricing models.

In order to build a commodity pricing model, it is of great importance to iden-
tify the key price determinants of the COy emission allowances. According to
the investigation of SO permit prices by Burtraw (1996), we categorize the
principle driving factors of CO, allowance prices into (i) policy and regulatory
issues and (ii) market fundamentals that directly concern the production of
CO3 and thus demand and supply of CO, allowances.

Regulatory settings, as in part (i), are likely to shape long-term development
of prices. For our pricing model we are interested in the determinants of short-
term price behavior. Policy changes may lead to sudden price changes in the
case of decisions concerning the National Allocation Plans (NAPs) or a change
of the European commitment to reduce 30% instead of 20% until 2020. Hence,
the consequences of changes in such regulatory or policy issues may be sudden
price jumps and phases of extreme volatility (Gronwald and Ketterer (2009),
Sanin and Violante (2009)). Chevallier et al. (2009a) specifically investigate
the EUA price drop in April 2007 and show that the market perception of risk
changed substantially.

Incorporating part (ii), allowance prices may also show phases of specific price
behavior due to fluctuations in production levels. In general, CO, produc-
tion depends on a number of factors, such as weather data (temperature,
rain fall and wind speed), fuel prices and economic growth. Some compre-



hensive research on determinants has been conducted by considering the de-
terminants of European carbon prices Alberola et al. (2008) or Chesney and
Taschini (2008). Especially unexpected (environmental) events and changes in
fuel spreads shock the demand and supply side of CO, allowances and conse-
quently market prices. A short term measure for the power and heat sector
to invest in CO4y abatement projects are the relative costs of coal and cleaner
fossil fuels such as oil and natural gas. The price spread between these fu-
els have a large influence on the demand for emission reduction certificates.
For example, for an electricity producer switching from ’cheap-but-dirty’ coal
to 'expensive-but-cleaner’ gas can significantly reduce emissions per MWh of
produced electricity. Therefore, fuel-switching from coal to gas implies less
emissions to be covered with permits what might make the price of EUAs
dependent on prices of gas and coal, see e.g. Fehr and Hinz (2006).

Since the beginning of the spot market trading in 2005, a number of stud-
ies are analyzing the behavior of emission certificate prices. Benz and Triick
(2009), Seifert et al. (2008) as well as Paolella and Taschini (2008) provide an
econometric analysis of the behavior of allowance prices and investigate dif-
ferent models for the dynamics of short-term spot prices. More recently there
have also been studies investigating derivative products in EUA markets like
convenience yields and the term structure of futures prices (Triick et al., 2006)
as well as the effects of options trading on market volatility (Chevallier et al.,
2009b)). Bohringer and Lange (2005) and Schleich et al. (2006) conduct sim-
ulation studies on COy market prices with respect to changes in different
market design parameters. Maeda (2001) gives a rather theoretical analysis
on banking impacts and forward pricing on the market.

Finally, only few studies investigate the dependence between returns of emis-
sion reduction certificates and those of other financial or commodity markets.
As suggested by the literature one could expect a significant impact of com-
modity prices on the prices of emission allowances. For example, for an electric-
ity producer switching from ’cheap-but-dirty’ coal to ’expensive-but-cleaner’
gas can significantly reduce emissions per MWh of produced electricity. There-
fore, fuel-switching from coal to gas implies less emissions to be covered with
permits what might make the price of EUAs dependent on prices of gas and
coal. Further, rising carbon prices as a factor of production could be related
to additional costs and uncertainties for producers and consumers and might
have an adverse effect on equity markets in general or equities of certain in-
dustries in particular.

Kosobud et al. (2005) find no statistically significant correlations between
monthly returns of SO2 emission allowance prices in the US market and re-
turns from various financial investments. On the other hand, Daskalakis et al.
(2009) find negative correlations of EUA futures with equity market returns
what may offer significant diversification opportunities to European equity



investors. They argue that the factors determining stock and bond prices are
substantially different from those affecting emission permit ones. Kara et al.
(2008) examine the impacts of EU CO, emissions trading on electricity mar-
kets and consumers in Finland but do not consider daily or weekly returns of
the series. Also the results of the influence of carbon prices on other commod-
ity prices are varied: so far there seems to be no common agreement whether
energy prices are yet significantly influenced by the price of carbon emission
allowances. Bunn and Fezzi (2007) investigate the economic impact of the
EU-ETS for carbon on wholesale electricity and gas prices in the UK. Us-
ing a structural co-integrated VAR model, they conclude that the prices of
carbon and gas jointly influence the equilibrium price of electricity and esti-
mate the transmission of shocks between gas, carbon and power prices. Nazifi
and Milunovich (2009) find contrary evidence when they apply a restricted
VAR model in first differences to test for existence of causal relationship and
long-run links between the price of carbon and the prices of energy fuels and
electricity. They apply Granger-causality tests and generalized impulse re-
sponse analysis and their results suggest that the dynamics of energy prices
are rather independent from the price of carbon emissions permits for the
considered time period. However, they find weak evidence of Granger causal
relation from carbon futures prices to natural gas prices. Reinaud (2007) inves-
tigates the interaction between the CO, allowance and electricity prices and
the impact on the industry’s electricity purchasing strategies in Europe. While
the author concludes that there is no universal answer on how the EU ETS
has affected electricity prices, at least some evidence for the CO5 pass-through
into electricity prices was provided during the abrupt fall of the CO, price in
May 2006. The fall by ten Euros per tonne of CO, was immediately followed
by a drop in wholesale electricity prices by five to ten Euros per MWh in
several markets. Reinaud further argues that this electricity price adjustment
can be directly attributable to the COy price fall, since it was not connected
to other energy market movements that could also affect electricity prices.

To our best knowledge, so far there has been no empirical study concentrat-
ing mainly on the dependence structure between EUA returns and those of
other financial variables or commodity markets. Next to standard approaches
investigating linear dependence by correlation analysis in our study we also
apply different copulas to model the complex dependence structure between
the return series of carbon emission allowance prices, commodity and equity
markets.

3 Copula Models

Recently, there has been some criticism towards the assumptions of multivari-
ate normality for the joint distribution of asset returns and the use of a covari-



ance matrix as the natural measure of dependence between financial assets.
As shown in various studies, see e.g. Jondeau and Rockinger (2006a), Junker
et al. (2006), Luciano and Marena (2003) or McNeil et al. (2005), the use of
correlation does not appropriately describe the dependence structure between
financial assets and could lead to inadequate measurement of the risk. The
authors suggest the application of copula methods for modelling the depen-
dence structure of the asset returns in order to overcome this problem. For an
excellent overview on copula methods in finance, see Cherubini et al. (2004),
where the range of applications of copula methods includes various topics such
as portfolio analysis, derivative pricing, interest rates or credit risk analysis.
With respect to analysing the dependence structure between different financial
assets, the methodology of copulas as alternative to the multivariate normal
model has the advantage that it does not require the assumptions of joint
normality for the distributions. Instead it allows joining arbitrary marginal
distributions into their one dimensional multivariate distribution allowing for
a wide range of dependence structures by using different copulas. So the mul-
tivariate joint distribution can be decomposed into marginal distributions and
an appropriate functional form for the dependence between the asset returns.

3.1  Copula Functions

This section provides a brief review on the estimation and goodness-of-fit
tests for copulas that will be used in the empirical analysis. Since this can be
considered as a pioneer study on applying and testing different copula models
to emission allowance markets, we also briefly illustrate some basic concepts
of copula families and the dependence measure Kendall’'s tau. A copula is
a function that combines marginal distributions to form a joint multivariate
distribution. The concept was initially introduced by Sklar (1959), but has only
gained high popularity in modelling financial or economic variables in the last
decade. For an introduction to copulas see e.g. Nelsen (1999) or Joe (1997),
for applications to various issues in financial economics and econometrics, see
e.g. Cherubini et al. (2004), McNeil et al. (2005), Frey and McNeil (2003) and
Hull and White (2004) to name a few. As shown by Cherubini and Luciano
(2001), Jondeau and Rockinger (2006), Junker et al (2006) or Luciano and
Marena (2003), the use of correlation usually does not appropriately describe
the dependence structure between financial assets and could lead to inadequate
measurement of the risk. Longin and Solnik (2001) empirically show that
asset returns are more highly correlated during volatile markets and during
market downturns. Dowd (2004) shows the strength of the copula comes from
its feature that it does not have any assumptions on the joint distributions
among the financial assets in a portfolio. Overall, the use of copulas offers the
advantage that the nature of dependence can be modeled in a more general
setting than using only linear dependence that is explained by correlation. It



also provides a technique to decompose a multivariate joint distribution into
marginal distributions and an appropriate functional form for the dependence
between the asset returns.

A copula is the distribution function of a random vector in R™ with standard
uniform marginals. Let X = (Xi,...,X,)" be a random vector of real-valued
random variables whose dependence structure is completely described by the
joint distribution function

F(zy,...,x,) = P(Xy <x1,..., X, < xp). (1)

Each random variable X; has a marginal distribution of F; that is assumed to
be continuous for simplicity. The transformation of a continuous random vari-
able X with its own distribution function F’ results in a random variable F'(X)
which is standardly uniformly distributed. Thus transforming equation (1)
component-wise yields

F(zy,...,2,)=P(X1 <21,..., X, < x,)
:P[Fl(Xl) < Fl(l’1>, c. 7Fn(Xn) < Fn(xnﬂ

= C(Fy(21), ..., Fo(z)), (2)

where the function C' can be identified as a joint distribution function with
standard uniform marginals — the copula of the random vector X. Equation
(2) illustrates how the copula combines the marginals to the joint distribu-
tion. The copula framework can be generalized for any collection of marginal
distributions and joint distributions. In our application we will only consider
the bivariate case with a function C(u,v) such that,

Clu,v) = CF(2),G(y)]. (3)

Then the function C(u,v) is defined as a copula function which relates the
marginal distribution functions F'(z) and G(y) into their joint probability dis-
tribution. Moreover, if marginal distributions F'(z) and G(y) are continuous,
the copula function C'(u,v) is unique, see e.g. Sklar (1959). In the following
we will describe four of the most commonly applied copulas: the Gaussian,
Student-t, Clayton and Gumbel copula.

3.2 FExamples of copulas

The literature reports a wide range of different copulas, see e.g. Joe (1997)
or Nelsen (1999) for an overview of the most common parametric families of



copulas. In the following we will limit ourselves to a description of a number of
copula families that will be used later on in the empirical analysis. In particular
we will briefly describe the Gaussian copula, the Student t-copula as well as
the Clayton and Gumbel copula.

We will start with the multivariate Gaussian and Student t-copula that belong
to the class of elliptical copulas. The probably most intensively used copula
in financial applications is the Gaussian copula. It is constructed from the
multivariate normal distribution and can be denoted by

CN(u, ..y ug) = DD (wa), ..., D (ug)) (4)

Hereby, ® denotes the the standard normal cumulative distribution function,
®~! the inverse of the standard normal cumulative distribution function and
¢ the standard multivariate Normal distribution with correlation matrix 3.
Applying C’év to two univariate standard normally distributed random vari-
ables results in a standard bivariate normal distribution with correlation co-
efficient p. Further note that, since the copula and the marginals can be ar-
bitrarily combined, this (and any other) copula can be applied to any set of
univariate random variables. The outcome will then surely not be multivariate
normal, but the resulting multivariate distribution has inherited the depen-
dence structure from the multivariate normal distribution. The multivariate
normal copula correlates the random variables rather near the mean and,
therefore, fails to incorporate dependence in the tail. Alternatively, to also
capture tail dependence, we can use the Student t-copula which is denoted
by:

TZ,U(ula U2,y - - 7ud> = tZ,U(tgl(u1)7 tgl(u1)7 o 7t;1<ud)) (5)

where t5; , is the multivariate Student t distribution with v degrees of freedom
and correlation matrix . Depending on the degrees of freedom parameter,
the Student t copula can also determine the strength of the tail dependence.
Generally, low values of the parameter v indicate strong tail dependence.

It is a common occurrence for economic and financial variables to exhibit tail-
dependence in only one of the tails, either the upper right or lower left of the
data. For example, tail-dependence in the lower left tail indicates that the
two variables show simultaneous extreme negative returns while high positive
returns in one of the variables may not affect the other variable that much.
To model asymmetric tail dependence, so-called Archimedean copulas can be
used, see e.g. Cherubini et al. (2004). Two of the most prominent members of
the family of Archimedean copulas are the Clayton and Gumbel copula that



will be briefly described in the following. The Clayton copula is an asymmet-
ric Archimedean copula, exhibiting greater dependence in the negative lower
tail than in the positive upper one. The multivariate Clayton copula can be
denoted by:

CM uy, ... ud):[Zui_e—d—i—ll , (6)

For the Clayton copula, the parameter # > 0 is used to measure the degree
of dependence. The greater #, the stronger is the dependence between the
considered variables, in particular in the lower left tail. The Gumbel copula,
on the other hand, exhibits greater dependence in the upper right tail and is
denoted by:

d 1/¢
C’gU(ul, iy Ug) = €Xp [— {Z(—ln(ul)‘b} ] , (7)

i=1

where ¢ > 1 indicates the dependence between the random variables X7, ... Xy.
In the next section we will illustrate how the dependence parameters of the
elliptical and Archimedean copulas can be related to measures of associa-
tion or dependence like Kendall’s tau. For further properties and examples
of Archimedean copulas and on the construction of such copulas by using
generator functions, we refer to Nelsen (1999) and Cherubini et al. (2004).

For selecting the most appropriate among a set of copulas, the literature usu-
ally suggests goodness-of-fit tests investigating the distance between the esti-
mated and the so-called empirical copula, see e.g. Genest et al. (2006, 2009).
In order to determine the empirical copula, usually the empirical margins are
used. Let (Xy;, ..., Xp;) be n observations of the random variable X;. Then the
empirical marginal cdf for a random variable X; is:

Fi(x) = zn:I(XjZ- <) i=1,..,d (8)

where /(.) denotes the indicator function returning the value of 1 if X;; < x
and 0 otherwise. Further, in the denominator n + 1 is used to keep the em-
pirical cdf to be smaller than 1. Note that the empirical marginal distribution
converges towards the actual distribution function for n approaching infin-
ity. Defining the empirical probability integral transforms u; = F, (xj;) for
i =1,..,d; j =1,.,n, for the vector u = (uy,..,uq), using the marginal
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cdf’s, the empirical copula is given by

em 1 n .
e n+1]§:11 VW(zj1) < w), e, Fa(wja) < ug)) 9)
1 n
— LS < U < o)

—_

]:

Note that the empirical copula is not really a copula according to the definition
by Deheuvels (1979), but rather the observed frequency of P(U; < uy, ....,Ug <
ud).

3.8  Measuring the Dependence

Kendall’s tau is often used to measure the dependence structure when employ-
ing Archimedean (Clayton and Gumbel) and elliptical Gaussian and Student t
copulas. Kendall’s tau 7 is a rank-based measure of dependence that provides
consistent estimation of the true underlying copula as it is shown for example
in Deheuvels (1979). The use of Kendall’s tau is probably best motivated for
the bivariate case. Assume that we have observations of two variables (X;,Y;),
1 = 1,...,n, for example the return series of two prices or financial assets
(stocks prices, equity and bond indices). We then consider pairs of vectors of
the original observations (Xj,Ys) and (X;, Y;). A pair of vectors is said to be
concordant if X, > X; when Y, > Y, or if X, < X; when Y, < Y;. On the other
hand a pair is said to be discordant if X, > X; when Y, <Y, or if X, < X;
when Y; > Y;. Note that adjustments might be necessary if the slope is 0 or
infinite, but this should not occur when the data are continuous and measured
with precision. This process is repeated for all choices of distinct pairs (us, vs)
and (ug,vy). Overall, there are m = n(n — 1)/2 such choices. Kendall’s 7 is
then simply the sum of all concordant minus discordant pairs or the sum of
+1s and -1s, divided by m. Obviously, values of 7 range from —1 to +1, while
in the case of independence 7 will be 0, see e.g. Nelsen (1999). In some ap-
plications as an alternative to Kendall’s tau also Spearman’s rank correlation
coefficient rho is used. For comparison of these two measures that emphasize
different aspects of the dependence, see e.g. Caperaa and Genest (1993). In the
bivariate case, based on the estimated value of 7 the dependence parameter
for the chosen copula can be calculated as a function of 7. For the Gaussian,
Student t, Clayton and Gumbel copula this is straightforward and as pointed
out by Genest and Rémillard (2008) under weak regularity conditions on the
copula family, this yields a consistent estimator of the dependence parameter.

Figure 1 shows scatter plots for four different copula functions based on the
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Fig. 1. Scatter plot of simulated dependence structure of ranks for different copulas
with the same Kendal’s tau 7 = 0.5. The graph illustrates the dependence between
the ranks for the Gaussian (upper left panel), the Student t (upper right panel),
Clayton (lower left panel) and Gumbel copula (lower right panel).

same Kendall’s tau 7 = 0.5. The graph illustrates the symmetric dependence
structure for the Gaussian and Student t copula, while the Student t cop-
ula exhibits more tail dependence in the lower left and upper right tail in
comparison to the Gaussian one. Further the asymmetric Clayton copula ex-
hibits greater dependence in the negative lower tail, while the Gumbel copula
exhibits greater dependence in the positive upper tail as illustrated by the
graph.

3.4 Goodness-of-fit Tests

One of the challenges is deciding on which copula provides the best fit to
the actual dependence structure of the data. Berg and Bakken (2006) note
that information criteria such as e.g. Akaike’s Information Criterion (AIC)
are generally not able to provide any understanding about the power of the
decision rule employed. Instead, goodness-of-fit (GOF) approaches are more
powerful in deciding whether to reject or accept parametric copulas, making
them the preferred choice in empirical applications, see e.g. Genest et al (2006,
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2009).

We provide a brief overview on how such tests can be conducted. Hereby,
we concentrate on so-called 'blanket tests’, where the implementation does
not require an arbitrary categorization of the data or any strategic choice
of smoothing parameters, weight functions or kernels. Genest et al. (2009)
provide various options for such tests by conducting a large Monte Carlo ex-
periment and report particularly good results for the blanket tests using ranks
and the Rosenblatt transform. With respect to the chosen distance measure,
the authors recommend the so-called Cramér-Von Mises statistic. Based on
these results, we only describe tests based on ranks that use the Cramér-Von
Mises for measuring the difference between the estimates and the empirical
copula. For various alternative tests, we refer to Berg and Bakken (2006) or
Genest et al. (2009). For the suggested approach the test procedure for in-
vestigating whether the dependence structure of a multivariate distribution
is well-represented by a specific parametric family of copulas can be roughly
summarized as follows:

1. Based on the vectors of rank observations and the estimated Kendall’s
tau for the empirical data, the corresponding dependence parameters for the
copula families can be determined. Then the values C<"(U;) and Cy(U;) for
the empirical and the estimated family of copulas can be calculated.

2. Using the Cramér-Von Mises statistic, the distance between the empirical
and estimated copula is calculated by

n

EICFWW — Co(Uy)]?

3. Then for some large integer N, the following steps are repeated: (a) Generate
a random sample from Cy and compute the associated rank vectors (U7, ..., U})
as well as the empirical copula C*7*(u). (b) Estimate Kendall’s tau 7* for
the generated random ~sample and estimate the parametric copula Cj. (c)
Determine S* = Y7, [CmP*(U;) — O (U;)]? for the generated sample.

4. From the N bootstrap samples, an approximate p-value, measuring the
goodness-of-fit of the copula, can be calculated as the fraction of simulations
where S > S,,. If the considered copula provides a good fit to the actual
dependence structure of the data, we should expect to get high p-values, while
for a copula providing a bad fit to the actual data, we will expect the p-value to
be low. In this case, depending on the level of confidence, the hypothesis that
the dependence structure of a multivariate distribution is well-represented by
a specific parametric family of copulas will be rejected.
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4 Empirical Analysis

4.1  The Data

In this section we will investigate the dependence structure between returns
from traded emission allowance contracts and various other financial variables
during the time period January 2, 2009 to December 24, 2009. We are par-
ticularly interested in the dependence structure between returns from EUA
spot and 2010 futures contracts and those of CER spot and futures, commod-
ity prices, a European stock market index, indices for investment in energy
companies, renewable energy companies and returns from oil, electricity and
gas futures contracts. Data on EUA and CER prices is obtained from the
London-based ECX. As for commodities, electricity spot and futures (Phelix
baseload future) are taken from EEX in Leipzig. The gas and oil futures are
downloaded from the ICE. Regarding the stock market indices, the analysis
includes the Eurostoxx 50, the more energy specific DJ Europe Energy Stock
Index (E1IENE) and the European Renewable Energy Index (ERIXP). For our
analysis we consider log-returns that are calculated as r; = In(P,y1/P;) from
the original price series.

4.2 Estimation of the copula functions

As described in Section 2, a possible way to estimate the dependence between
two random variables via a copula is to model the dependence between the
rank transforms. This has the advantage that the possibly unknown marginal
distribution is not required, since the empirical marginal cdf can be used.
Figure 2 provides bivariate scatter plots of the rank transforms for returns of
CER 2010 futures, Gas 2010 futures, Oil 2010 futures and E1ENE spot returns
versus EUA 2010 futures returns. The figure illustrates that in particular be-
tween EUA and CER 2010 futures returns there is a strong dependence, while
returns of between EUA futures and the considered commodity futures and
financial variables exhibit rather low correlation or dependence.

In a next step, for each of the considered series, based on the rank transfor-
mations we calculate Kendall’s tau. Further using the relationships between
Kendall’s tau and the copula parameters described in the previous section,
the dependence parameters 6 for the Clayton, ¢ for the Gumbel and the coef-
ficient of correlation p for the Gaussian and Student t copula are calculated.
The results are displayed in Table 1. We find that Kendall’s tau ranges from
approximately 0.05 to 0.77 for the different series what corresponds to a cor-
relation coefficient ranging from 0.08 to 0.94. Obviously, the highest value for
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Fig. 2. Scatter plot of ranks for daily CER 2010 Futures (upper left panel), 2010
Gas Futures (upper right panel), 2010 Oil Futures (lower left panel) and E1IENE
spot returns (lower right panel) returns versus ranks of EUA 2010 Futures returns.

Kendall’s tau can be observed for the returns of the CER 2010 futures con-
tracts while we observe the lowest rank dependence and correlation between
the ranks of the 2010 EUA and gas futures contracts. Regarding the returns
of CER and EUA futures contracts, these results could have been expected.
As indicated by earlier studies, prices of these two certificates show strong
correlations and similar price movements, since they express an almost identi-
cal asset. On the other hand, it is surprising that the returns of stock market
indices like Eurostoxx 50 and the energy specific DJ Europe Energy Stock
Index (E1IENE) and the European Renewable Energy Index (ERIXP) seem to
exhibit a higher degree of dependence with EUA futures returns than any of
the considered commodities except electricity. Our results also partly contra-
dict earlier studies by Kosobud et al. (2005) and Daskalakis et al. (2009). The
former found no statistically significant correlations between returns of SO,
emission allowances and returns from other financial variables while the lat-
ter observed that EUA futures returns were negatively correlated with equity
market returns during the pilot trading period.

Based on the estimated parameters, we then fit the different copulas to the

bivariate series. Note that for the Student t copula also the degree of freedom
parameter v needs to be estimated. We determine v such that the distance
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Asset T 0 10) p

CER 2010 Futures 0.7704 6.7104 4.3552 0.9357
Gas 2010 Futures  0.0528 0.1115 1.0558 0.0829
Oil 2010 Futures 0.1839 0.4506 1.2253 0.2848
Coal 2010 Futures 0.2367 0.6203 1.3101 0.3633
EEX 2010 Futures 0.3902 1.2798 1.6399 0.5753
Eurostoxx 50 Spot  0.2686 0.7344 1.3672 0.4095
E1ENE Spot 0.2437 0.6446 1.3223 0.3736
ERIXP Spot 0.2580 0.6954 1.3477 0.3943

Table 1

Kendall’s 7 and corresponding dependence parameters 6 for the Clayton copula, ¢
for the Gumbel copula and coeflicient of correlation p for the Gaussian and Student
t copula for returns in 2009.

between the empirical and estimated Student t copula is minimized. In order
to investigate which of the copulas describes best the dependence structure
between the refined and crude oil returns, we use the Cramér-Von Mises sta-
tistic

i Emp(T;) — Co(U)]?

to measure the distance between the empirical and estimated copulas. Figure
3 provides a plot of returns for daily EUA 2010 Futures versus CER 2010
Futures, ranks for daily EUA 2010 Futures returns versus CER 2010 Futures
returns, a 3d histogram of ranks for daily EUA 2010 Futures returns versus
CER 2010 Futures returns and the fit of the Student t copula to the ranks. The
same graphs are also provided for the series daily EUA 2010 Futures versus
Oil 2010 Futures in figure 4.

The results are presented in 2 and generally support the Student t copula
providing the best fit for the dependence structure. For each of the considered
series, except the Eurostoxx 50, it yields the smallest distance between the
estimated and the actually observed empirical copula. We conclude that most
of the series the daily returns exhibit at least some degree of tail dependence
both in the lower left and upper right tail. Only for the relationship between
EUA 2010 futures and Eurostoxx 50 returns, the Gumbel copula that gives
more tail dependence in the upper right tail yields the best fit to the depen-
dence structure between the returns. Surprisingly, for most of the series also
the Gaussian copula outperforms both the Clayton and Gumbel copula that
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Fig. 3. Plot of returns for daily EUA 2010 Futures versus CER 2010 Futures (upper
left panel), ranks for daily EUA 2010 Futures returns versus CER 2010 Futures
returns (upper right panel), 3d histogram of ranks for daily EUA 2010 Futures
returns versus CER 2010 Futures returns (lower left panel) and fit of the Student t
copula to the ranks (lower right panel).

exhibit dependence either only in the lower left or upper right tail. Generally,
the Clayton copula yields the greatest distance from the empirical copula while
the fit of the Gumbel is significantly better, but still worse than the Gaussian
and Student t copula. Only for the dependence structure between EUA and
Gas 2010 futures contracts, all of the considered copulas provide a similar fit
to the data. However, as it is indicated by Kendall’s 7 between the returns of
these two variables no significant dependence could be detected. Overall, the
results suggest that symmetric copulas seem to be more appropriate to capture
the dependence structure between EUA returns and the returns of commodity
futures and European equity indices. Further, we observe that there is some
tail dependence between the returns, but it is generally not only exhibited in
the lower left or upper right tail but rather in a symmetric way:.

Since the distance between the estimated and empirical copula alone is not
sufficient to determine whether any of the models really provides a good fit
to the data, following Genest et al. (2009) also goodness-of-fit tests are con-
ducted. Recall that for the goodness-of-fit tests, the null hypothesis is that
the examined copula provides an appropriate fit to the data. Following the
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Fig. 4. Plot of returns for daily EUA 2010 Futures versus Oil 2010 Futures (upper left
panel), ranks for daily EUA 2010 Futures returns versus Oil 2010 Futures returns
(upper right panel), 3d histogram of ranks for daily EUA 2010 Futures returns
versus Oil 2010 Futures returns (lower left panel) and fit of the Student t copula to
the ranks (lower right panel).

Asset Clayton Gumbel Gaussian Student t

CER 2010 Futures 0.0542  0.0171 0.0074 0.0060 (v = 3)
Gas 2010 Futures 0.0108  0.0113 0.0108  0.0102 (v = 10)
Oil 2010 Futures 0.0274 0.0159 0.0117 0.0117 (v = 24)
Coal 2010 Futures  0.0305  0.0402 0.0261 0.0234 (v =4)
EEX 2010 Futures  0.0634  0.0147 0.0084  0.0078 (v = 10)
Eurostoxx 50 Spot  0.0671  0.0094 0.0153  0.0152 (v = 22)
E1ENE Spot 0.0363  0.0238 0.0165 0.0142 (v =5)
ERIXP Spot 0.0373  0.0171 0.0112 0.0100 (v = 6)

Table 2

Distance between estimated and empirical copula for the considered series. Con-
sistently, the Student t copula yields the lowest distance according to Cramér-Von

Mises statistic.
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Asset Clayton Gumbel Gaussian Student t

CER 2010 Futures  0.000 0.052 0.795 0.960 (v = 3)
Gas 2010 Futures 0.926 0.564 0.918 0.962 (v = 10)
Oil 2010 Futures 0.091 0.306 0.882 0.846 (v = 24)
Coal 2010 Futures  0.052 0.004 0.102 0.174 (v =4)
EEX 2010 Futures 0.001 0.620 0.979 0.995 (v = 10)

Eurostoxx 50 Spot  0.001 0.954 0.565  0.573 (v = 22)

E1ENE Spot 0.185 0.023 0.475 0.687 (v =5)

ERIXP Spot 0.466 0.212 0.862 0.941 (v = 6)
Table 3

Results as p-value for bootstrap goodness-of-fit test according to Genest et al (2009).

test procedure described in the previous section, for each of the copula fam-
ilies, based on the distance between the empirical and estimated copulas for
our bootstrap samples, p-values with respect to the null hypothesis can be
calculated. The p-value provides the level of significance at which the null hy-
pothesis would be rejected and therefore a measure of how much evidence we
have against the null hypothesis of a good fit of the suggested copula. Table
3 lists the p-values for the different copula families.

Also for these tests the Student t and Gaussian copula perform best and
generally outperform the Clayton and Gumbel copula. Still, based on the
conducted goodness-of-fit tests, it is difficult to reject the adequacy of the
Gumbel and Clayton copula. This confirms results by Genest et al. (2009)
who state that the power of goodness-of-fit tests for copulas is often small
when the dependence between the variables is low and only a small number
of observations can be considered. Once again, for the dependence between
EUA 2010 futures and Eurostoxx 50 returns, the Gumbel copula seems to be
the best suited and yields the highest p-value. However, for most series the
Gaussian and Student t copula seem to be most appropriate and for none of the
considered series the null hypothesis of an appropriate fit can be rejected for
these copulas. On the other hand, for the Clayton copula, the null hypothesis
of an appropriate fit is rejected for the dependence between EUA 2010 futures
and CER 2010 futures, EEX 2010 futures and Eurostoxx 50 returns. For the
Gumbel copula, the null hypothesis is rejected at the 10% level for the CER
2010 futures and the DJ Europe Energy Stock Index. Overall, we conclude that
there is superior fir of the elliptical Gaussian and Student t copula. Generally,
the smallest distance between estimated and empirical copula is usually given
by the Student t copula indicating some symmetric tail dependence.
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4.8  Risk Management Analysis

In the following we extend the analysis to a risk management perspective and
consider an exemplary portfolio with weights of 25% in EUA 2010 Futures
contracts, 25% in Oil 2010 Futures contracts, 25% in Eurostoxx 50 Index and
25% in DJ Europe Energy Index. In order to determine the distribution of
the portfolio returns, we will both consider the standard variance-covariance
approach and an approach modeling the dependence structure between the
returns using the Student t copula. Of course, also other copula models could
be considered. However, as illustrated in the previous section for most of the
series, the Student t copula model provided the best results and seemed to
be most appropiate to describe the dependence structure between the return
series.

In a first step we investigate the marginal distributions of the two series. A fit
of the normal distribution to the return series of EUA 2010 futures contracts
yields p = —0.0009 and o = 0.0307, while the corresponding parameter esti-
mates are g = 0.0007 and o = 0.0191 for 2010 Oil futures returns, p = 0.0006
and o = 0.0176 for Eurostoxx 50 returns and p = 0.0007 and ¢ = 0.0210 for
the E1IENE returns. We further apply a Kolmogorov-Smirnov goodness-of-fit
test in order to examine whether the normal distribution provides an appro-
priate fit to the return series. The tests yields a test statistic of d = 0.0542
and a p-value of p = 0.4359 for the EUA 2010 futures returns while the cor-
responding statistics are d = 0.0526 and p = 0.4743 for 2010 Oil Futures
returns, d = 0.0418 and p = 0.0.7576 for Eurostoxx 50 returns and d = 0.0354
and p = 0.9011 for EIENE returns. We conclude that there is no significant
evidence against the null hypothesis of an appropriate fit of the normal dis-
tribution to the marginal return series.

Once the marginal distributions have been specified, they can be used for de-
termining the distribution of portfolio returns. In our analysis we compare ap-
proaches using a Student t copula model to the standard multivariate normal
or variance-covariance approach that is generally applied in portfolio manage-
ment. For the variance-covariance approach we simply need to estimate the
variance-covariance matrix > for the return series. Then using portfolio the-
ory, based on the mean of the marginal return series, the portfolio weights and
the estimated variance-covariance matrix, we can calculate the distribution of
the portfolio return. We obtain p, = 0.0003 and 0, = 0.0167. Note that due to
diversification, the return distribution of the portfolio has a smaller standard
deviation than each of the individual return series. Based on the determined
distribution it is then straightforward to also determine the 95%, 99% and
99.9% Value-at-Risk (VaR) figures that are reported in Table 4.

For determining the return distribution using the Student t copula models, we
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Fig. 5. Plot of simulated return distribution (left panel) and tail of simulated return
distribution (right panel) for the considered portfolio. For both plots the blue line
is the probability density for the multivariate normal approach, while the red line
provides the simulated density for a model using the Student t copula to model the
dependence structure between the rank transforms.

first estimate the multivariate student t copula, hence the correlation matrix
C and degrees of freedom parameter v for the rank transforms of the return
series. The estimation yields approximately v = 6.54. Then we generate sam-
ples of dependent ranks using the multivariate Student t copula with correla-
tion matrix C' and degrees of freedom parameter v. Thus, we simulate 10000
pairs of dependent uniformly distributed random variables (uy, us, us, uy4). In
a next step, the inverse of the estimated normal distributions for the margins
are used to calculate the simulated dependent returns for the series. Finally,
using the portfolio weights we can then determine a simulated return distri-
bution based on a dependence structure modelled by the Student t copula
and Gaussian margins. The results on standard deviation, skewness, kurtosis
and corresponding VaR figures are reported in Table 4. Further, a plot of the
simulated return distribution using the Student t copula model in comparison
to the standard variance-covariance approach is provided in 5.

Our results indicate that the standard variance-covariance approach under-
estimates the risk in particular in the extreme tail of the distribution. The
standard deviation and in particular the kurtosis of the distribution are higher
for the model using the Student t copula for the dependence structure. Fur-
ther, while for 95% and 99% VaR, the copula approach only yields a VaR that
is approximately 3% and 6% higher for the 99.9% VaR there is a significant
difference between the two approaches. The 99.9% VaR is underestimated by
approximately 16% when the multivariate normal approach is used. These re-
sults could be important for risk management or hedging purposes, but also
for the purpose of portfolio optimisation, in particular when not only the
mean and variance but also higher moments of the portfolio return distribu-
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Approach Std Skew Kurtosis VaRgogs VaRggg VaRpgog

Variance/Covariance 0.0167  0.000 3.0000  -0.0272 -0.0386 -0.0513
Student Copula 0.0173 0.0130 3.5282  -0.0279 -0.0409 -0.0595

Table 4

Value-at-Risk for a portfolio with weights of 25% in EUA 2010 Futures contracts,
25% in Oil 2010 Futures contracts, 25% in Eurostoxx 50 Index and 25% in DJ
Europe Energy Index. We consider VaRg 95, VaRg.99, VaRg.g99 for both a standard
multivariate normal (variance-covariance) approach and the estimated dependence
structure according to the Student t copula with margins from the normal distrib-
ution.

tion are considered or when risk-adjusted measures are used, see e.g. Jondeau
and Rockinger (2006b); Jorion (2001); Keating and Shadwick (2002). Note
that our results with respect to an underestimation of the risk were also ro-
bust when alternative portfolio weights or different combination of assets were
considered.

4.4 Time-Varying Copulas

To investigate the nature of the dependence through time we further apply
a time-varying estimation of the copula parameters for the different bivariate
series. Hereby, we decide to estimate the different copula parameters using
a rolling window approach as it is applied e.g. in Giacomini et al. (2009);
Grégoire et al. (2008). Note that more advanced approaches on the estimation
of time-varying copulas have been suggested e.g. by Patton (2006); Rodriguez
(2007); Giacomini et al. (2009) but our aim in this section is to provide a pre-
liminary and rather descriptive analysis of the dependence structure through
time. The length of the window was chosen to be 126 trading days what cor-
responds to approximately six months. Figure 6 shows a plot of the estimated
copula parameters for the Clayton, Gumbel and Gaussian / Student t copula
for a six month rolling window period. Thus, the first six month period con-
siders returns from January 5, 2009 to June 30, 2009 while the last window
data from July 1, 2009 to December 24, 20009.

For the dependence structure between EUA and CER 2010 future returns, we
find that the estimated correlation coefficient is rather constant while there is
some time-variation in the estimated dependence parameter for the Gumbel
and Clayton copula. Further, we find that overall the dependence between
EUA 2010 futures returns and 2010 Gas futures, 2010 Electricity future and
Eurostoxx 50 spot returns is slightly decreasing over time. For each of the con-
sidered copulas the dependence parameters indicate a marginal lower degree of
dependence for the later six month periods in 2009. However, to conclude that
there is a structural break or a significant change in the dependence structure
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Fig. 6. Plot of estimated copula parameters for Clayton (blue), Gumbel (green) and
Gaussian and Student t (red) copula for a six month rolling window period with
start dates from January 5, 2009 up to July 1, 2009. The graphs show the results
for dependence structure between returns for daily EUA 2010 Futures and CER
2010 Futures (upper left panel), 2010 Gas Futures (upper right panel), 2010 EEX
Electricity Futures (lower left panel) and Eurostoxx 50 Spot contracts (lower right
panel).

during the considered period further statistical tests as suggested by Patton
(2006) or Giacomini et al. (2009) would be required, what is left to future
work.

5 Conclusions

This paper applies different copulas in order to investigate the dependence
structure between EUA future returns and those of other financial assets and
commodities during the Kyoto commitment period. The results suggest that
the dependence between EUA and oil and gas futures returns is relatively
weak. On the other hand, a more significant dependence structure is found
between EUA and electricity futures returns as well as between EUA futures
and equity and energy index spot returns. These results at least somehow con-
tradict earlier studies by Kosobud et al. (2005) and Daskalakis et al. (2009).
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The former found no statistically significant correlations between returns of
SO4 emission allowances and returns from other financial variables while the
latter observed that EUA futures returns were negatively correlated with eq-
uity market returns during the pilot trading period. Not surprisingly the re-
lationship between EUA and CER future returns is characterized by a very
strong dependence.

Regarding the nature of dependence, we find some evidence of symmetric
tail dependence for most of the return series. Surprisingly, for most of the
series also the Gaussian copula outperforms both the Clayton and Gumbel
copula that exhibit dependence either only in the lower left or upper right tail.
Generally, the Clayton copula yields the worst fit while the fit of the Gumbel
is significantly better, but still worse than the Gaussian and Student t copula.
We also conduct a risk analysis for a portfolio consisting of equal weights in
emission allowance futures, oil futures and two equity indices. We find that
applying the standard variance-covariance approach might underestimate the
kurtosis and in particular tail risk of the portfolio return distribution. Further,
investigating Kendall’s tau and the dependence parameters through time we
find that overall the dependence between EUA 2010 futures returns and 2010
Gas futures, 2010 Electricity future and FEurostoxx 50 spot returns is slightly
decreasing during the considered period.

The obvious conclusion that can be drawn from this study is that EUAs are
useful for diversifying asset portfolios, in particular those that focus on energy
commodities and energy assets. In addition, a number of extensions to the
current study are conceivable. Firstly, it might be worthwhile to investigate
whether the dependence structures between EUA returns and other financial
assets and commodities is different to the dependence structure between CER
contracts. Maybe such an analysis could also contribute to the literature that
is concerned with the EUA-CER spread. Secondly, extending the analysis
using data from different years would allow conclusions about the stability
of the dependence structure between the variables through time. This would
yield interesting insights in the general development of this newly established
market and its relationship to other financial markets.
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